Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Mandibular condyle fractures are one of the most common facial bone fractures, and open reduction, which involves implanting miniplates to ensure rigid fixation of the fractured surfaces, is the standard treatment. The aim of this study was to compare the stress fields of resorbable and titanium miniplates and of single and double miniplates by taking the displacement between the fracture surfaces (interfragmentary displacement) into account. Three-dimensional mandible models were created based on computed tomography images from 10 patients. To simulate the common loading conditions that the mandible is exposed to during daily living, mastication and muscle forces were applied to each model. The von Mises stress distribution over the miniplates and the maximum displacements between the fractured surfaces were calculated using finite element analysis. The mean maximum stresses associated with the titanium miniplates were significantly higher than those associated with the resorbable miniplates ( p < 0.05). Moreover, the mean maximum interfragmentary displacements associated with the resorbable miniplates were higher than those associated with the titanium miniplates, but there was no significant difference ( p > 0.05). The stress and interfragmentary displacement results associated with the single and double miniplates (made of either of the two materials) were within the clinically acceptable limits.
Wydawca
Czasopismo
Rocznik
Tom
Strony
709--718
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey
autor
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul University, Capa, Fatih, Istanbul 34104, Turkey
autor
- Mechanical Engineering Department, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey
Bibliografia
- [1] van den Bergh B, Karagozoglu KH, Heymans MW, Forouzanfar T. Aetiology and incidence of maxillofacial trauma in Amsterdam: a retrospective analysis of 579 patients. J Craniomaxillofac Surg 2012;40:165–9.
- [2] Sugiura T, Yamamoto K, Murakomi K, Sugimura M. A comparative evaluation of osteosynthesis with lag screws, miniplates or Kirschner wires for mandibular condylar process fractures. J Oral Maxillofac Surg 2001;59:1161–8.
- [3] Manisali M, Amin M, Aghabeigi B, Newman L. Retromandibular approach to the mandibular condyle: a clinical and cadaveric study. Int J Oral Maxillofac Surg 2003;32:253–6.
- [4] Haug RH, Assael LA. Outcomes of open versus closed treatment of mandibular subcondylar fractures. J Oral Maxillofac Surg 2001;59:370–5.
- [5] Pilling E, Eckelt U, Loukota R, Schneider K, Stadlinger B. Comparative evaluation of ten different condylar base fracture osteosynthesis techniques. Br J Oral Maxillofac Surg 2010;48:527–31.
- [6] Eppley BL. A resorbable and rapid method for maxillomandibular fixation in pediatric mandible fractures. J Craniofac Surg 2000;11:236–8.
- [7] Meyer C, Serhir L, Boutemi P. Experimental evaluation of three osteosynthesis devices used for stabilizing condylar fractures of the mandible. J Craniomaxillofac Surg 2006;34:173–81.
- [8] Cansiz E, Dogru SC, Arslan YZ. Comparative evaluation of the mechanical properties of resorbable and titanium miniplates used for fixation of mandibular condyle fractures. J Mech Med Biol 2015;15:1540032–4.
- [9] Keyak JH, Meagher JM, Skinner HB, Mote CD. Automated three-dimensional finite element modelling of bone: a new method. J Biomed Eng 1990;12:389–97.
- [10] Iolascon G, Napolano R, Gioia M, Moretti A, Riccio I, Gimigliano F. The contribution of cortical and trabecular tissues to bone strength: insights from denosumab studies. Clin Cases Miner Bone Metab 2013;10:47–51.
- [11] Huo J, Dérand P, Rännar LE, Hirsch JM, Gamstedt EK. Failure location prediction by finite element analysis for an additive manufactured mandible implant. Med Eng Phys 2015;37:862–9.
- [12] Kozakiewicz M. Classification proposal for fractures of the processus condylaris mandibulae. Clin Oral Investig 2019;23:485–91.
- [13] Choi JP, Baek SH, Choi JY. Evaluation of stress distribution in resorbable screw fixation system: three-dimensional finite element analysis of mandibular setback surgery with bilateral sagittal split ramus osteotomy. J Craniofac Surg 2010;214:1104–9.
- [14] Dogru SC, Cansiz E, Arslan YZ. A review of finite element applications in oral and maxillofacial biomechanics. J Mech Med Biol 2018;18:1–26.
- [15] Boccaccio A, Lamberti L, Pappalettere C, Cozzani M, Siciliani G. Comparison of different orthodontic devices for mandibular symphyseal distraction osteogenesis: a finite element study. Am J Orthod Dentofacial Orthop 2008;134:260–9.
- [16] Xiangdong Q, Limin M, Shizhen Z. The influence of the closing and opening muscle groups of jaw condyle biomechanics after mandible bilateral sagittal split ramus osteotomy. J Craniomaxillofac Surg 2012;40:159–64.
- [17] Santler G, Karcher H, Ruda C, Kole E. Fractures of the condylar process: surgical versus nonsurgical treatment. J Oral Maxillofac Surg 1999;57:392–7.
- [18] Ziccardi VB, Schneider RE, Kummer FJ. Wurzburg lag screw plate versus four-hole miniplate for the treatment of condylar process fractures. J Oral Maxillofac Surg 1997;55:602–9.
- [19] Haug RH, Peterson GP, Goltz M. A biomechanical evaluation of mandibular condyle fracture plating techniques. J Oral Maxillofac Surg 2002;60:73–81.
- [20] Zachariades N, Mezitis M, Mourouzis C, Papadakis D, Spanou A. Fractures of the mandibular condyle: review of 466 cases. Literature review, reflections on treatment and proposals. J Craniomaxillofac Surg 2006;34:421–32.
- [21] Choi BH, Kim KN, Kim HJ, Kim MN. Evaluation of condylar neck fracture plating techniques. J Craniomaxillofac Surg 1999;27:109–12.
- [22] Meyer C, Kahn JL, Boutemi P, Wilk A. Photoelastic analysis of bone deformation in the region of the mandibular condyle during mastication. J Craniomaxillofac Surg 2002;30:160–9.
- [23] Kulkarni RK, Moore EG, Hegyeli AF, Leonard F. Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 1971;5:169–81.
- [24] Augat P, Margevicius K, Simon J, Wolf S, Suger G, Claes L. Local tissue properties in bone healing: influence of size and stability of the osteotomy gap. J Orthop Res 1998;16:475–81.
- [25] Lauer G, Pradel W, Leonhardt H, Loukota R, Eckelt U. Resorbable triangular plate for osteosynthesis of fractures of the condylar neck. Br J Oral Maxillofac Surg 2010;48:532–5.
- [26] Laughlin RM, Block MS, Wilk R, Malloy RB, Kent JN. Resorbable plates for the fixation of mandibular fractures: a prospective study. J Oral Maxillofac Surg 2007;65:89–96.
- [27] Hammer B, Schier P, Prein J. Osteosynthesis of condylar neck fractures: a review of 30 patients. Br J Oral Maxillofac Surg 1997;35:288–91.
- [28] Marinescu R, Daegling DJ, Rapoff AJ. Finite-element modeling of the anthropoid mandible: the effects of altered boundary conditions. Anat Rec A Discov Mol Cell Evol Biol 2005;283:300–9.
- [29] Bonnet AS, Postaire M, Lipinski P. Biomechanical study of mandible bone supporting a four-implant retained bridge: finite element analysis of the influence of bone anisotropy and foodstuff position. Med Eng Phys 2009;31:806–15.
- [30] Reina-Romo E, Sampietro-Fuentes A, Gómez-Benito MJ, Domínguez J, Doblaré M, García-Aznar JM. Biomechanical response of a mandible in a patient affected with hemifacial microsomia before and after distraction osteogenesis. Med Eng Phys 2010;32:860–6.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb8a2db1-b58d-4150-9894-c654e341f461