PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensor placement optimization of civil engineering structures using GA-SA algorithm

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effectively and accurately obtaining the structure and status information of civil engineering by optimizing the configuration of sensors is the basis for the monitoring of civil engineering structures, and it is also the key content for subsequent monitoring and evaluation. To realize the intelligent development of sensor placement optimization, the simulated annealing algorithm is first used to optimize the genetic algorithm, and the sensor placement optimization method of civil engineering structure using genetic simulated annealing algorithm is obtained. The results showed that in the optimization results under the ℎ1 and ℎ2 functions, the function values of the genetic simulation annealing algorithm were 0.000045 and –1.031624 in the 125th iteration, respectively, and the algorithm quickly obtained the global optimal solution. In the practical application of civil engineering structures, the genetic simulation annealing algorithm convergence was the best when measurement points were less than 27, and the optimal solution was obtained after 16 iterations. After measurement points exceeded 28, the genetic simulated annealing algorithm obtained excellent optimization results. The above results show that the proposed method can provide targeted optimization solutions for different types of civil engineering structures to achieve the goal of monitoring.
Słowa kluczowe
Rocznik
Strony
97--110
Opis fizyczny
Bibliogr. 15 poz., il., tab.
Twórcy
autor
  • College of Civil Engineering, Henan University of Engineering, Zhengzhou, China,
  • Faculty of Engineering, Universiti Malaysia Sarawak, Malaysia
autor
  • School of Art and Design, Henan University of Engineering, Zhengzhou, China
Bibliografia
  • [1] C. Szydłowski, Ł. Smakosz, M. Stienss, and J. Górski, “Monte Carlo simulations of the fracture resistance degradation of asphalt concrete subjected to environmental factors”, Archives of Civil Engineering, vol. 69, no. 1, pp. 245-257, 2023, doi: 10.24425/ace.2023.144171.
  • [2] Q. Zaheer, M.M. Manzoor, and M.J. Ahamad, “A review on developing optimization techniques in? Civil engineering”, Engineering Computations, vol. 40, no. 2, pp. 348-377, 2023, doi: 10.1108/EC-01-2022-0034.
  • [3] J. Lange, A.V.D. Heyden, U. Knaack, and E. Kanli, “A bridge built of paper - a master’s-course project for civil engineering students”, Structural Engineering International, vol. 32, no. 3, pp. 345-349, 2022, doi: 10.1080/10168664.2020.1838250.
  • [4] T. Fuller, “Civil engineers need the right skills and mindset to create sustainable living”, Proceedings of the Institution of Civil Engineers - Civil Engineering, vol. 176, no. 3, pp. 99-100, 2023, doi: 10.1680/jcien.2023.176.3.99.
  • [5] G. Wrzesiński, K. Pawluk, M. Lendo-Siwicka, and J. Kowalski, “Analysis of technology, time and costs of three methods of building a single-family house: traditional brick, reinforced concrete prefabrication, timber frame”, Archives of Civil Engineering, vol. 69, no. 2, pp. 23-39, 2023, doi: 10.24425/ace.2023.145250.
  • [6] H.Wang, Y.Wang, X. Lv, C. Yu, and H. Jin, “Genetic algorithm with local search for the multi-target scheduling in flexible manufacturing system”, Journal of Circuits, Systems and Computers, vol. 31, no. 16, pp. 123-149, 2022, doi: 10.1142/S0218126622502796.
  • [7] F. Meng, Q. Wang, Y. Liu, and Y. Zhang, “Design and BIM-based technology on a new cross-sea bridge in Xiamen, China”, Proceedings of the Institution of Civil Engineers - Civil Engineering, vol. 176, no. 3, pp. 121-127, 2023, doi: 10.1680/jcien.22.00229.
  • [8] K.A. Eltouny and X. Liang, “Large-scale structural health monitoring using composite recurrent neural networks and grid environments”, Computer-Aided Civil and Infrastructure Engineering, vol. 38, no. 3, pp. 271-287, 2023, doi: 10.1111/mice.12845.
  • [9] D.D. Tannus, D.D.G.B. Cruz, and O.A.Z. Sotomayor, “Output-only based identification of modal parameters of linear and nonlinear structures by wavelet transform”, IEEE Latin America Transactions, vol. 19, no. 1, pp. 124-131, 2021, doi: 10.1109/TLA.2021.9423855.
  • [10] D. Cherid, N. Bourahla, M.S. Laghoub, and A. Mohabeddine, “Sensor number and placement optimization for detection and localization of damage in a suspension bridge using a hybrid ANN-PCA reduced FRF method”, International Journal of Structural Integrity, vol. 13, no. 1, pp. 133-149, 2022, doi: 10.1108/IJSI-07-2021-0075.
  • [11] N. Naud, L. Sorelli, A. Salenikovich, and S. Cuerrier-Auclair, “Fostering a cast-in-place steel-UHPFRC connector for ductile timber-concrete composite structures: Parametric study of the shear behaviour and design considerations”, Canadian Journal of Civil Engineering, vol. 48, no. 9, pp. 1081-1092, 2021, doi: 10.1139/cjce-2019-0173.
  • [12] J. Shen, C. Du, F. Yan, B. Chen, and Z. Tu, “Two parameters identification for polarization curve fitting of PEMFC based on genetic algorithm”, International Journal of Energy Research, vol. 46, pp. 9621-9633, 2022, doi: 10.1002/er.7831.
  • [13] X. Chen, L. He, Q. Li, et al., “Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm-enhanced artificial neural network-based CT radiomics signature”, European Radiology, vol. 33, no. 1, pp. 11-22, 2023, doi: 10.1007/s00330-022-08954-6.
  • [14] X. Liu, Y. Han, and J. Chen, “Discrete pigeon-inspired optimization-simulated annealing algorithm and optimal reciprocal collision avoidance scheme for fixed-wing UAV formation assembly”, Unmanned Systems, vol. 9, no. 3, pp. 211-225, 2021, doi: 10.1142/S230138502141003X.
  • [15] M.L. Umashankar, et al., “An efficient hybrid model for cluster head selection to optimize wireless sensor network using simulated annealing algorithm”, Indian Journal of Science and Technology, vol. 14, no. 3, pp. 270-288, 2021, doi: 10.17485/IJST/V14I3.2318.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb85c8d1-90a5-4477-b744-1386cae284e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.