PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical treatment of the generalized time-fractional Huxley-Burgers’ equation and its stability examination

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we show how to approximate the solution to the generalized time-fractional Huxley-Burgers’ equation by a numerical method based on the cubic B-spline collocation method and the mean value theorem for integrals. We use the mean value theorem for integrals to replace the time-fractional derivative with a suitable approximation. The approximate solution is constructed by the cubic B-spline. The stability of the proposed method is discussed by applying the von Neumann technique. The proposed method is shown to be conditionally stable. Several numerical examples are introduced to show the efficiency and accuracy of the method.
Wydawca
Rocznik
Strony
436--451
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-kom, Egyp
  • Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt
  • Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt
autor
  • Department of Mathematics, College of Science and Arts in Ar-Rass, Qassim University, Ar-Rass, Kingdom of Saudi Arabia
  • Department of Mathematics and Statistics, Faculty of Management Technology and Information Systems, Port Said University, Port Said, Egypt
Bibliografia
  • [1] B. Ross and K. S. Miller, An Introduction to the Fractional Calculus and Fractional Differential Equations, John-Wiley and Sons, New York, 1993.
  • [2] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, London, 1993.
  • [3] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [4] Y. Zhang, Z. Sun, and H. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys. 265 (2014), 195–210, DOI: https://doi.org/10.1016/j.jcp.2014.02.008.
  • [5] H. Wang and N. Du, Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations, J. Comput. Phys. 258 (2014), 305–318, DOI: https://doi.org/10.1016/j.jcp.2013.10.040.
  • [6] A. Neamaty and R. Darzi, Comparison between the variational iteration method and the homotopy perturbation method for the Sturm-Liouville differential equation, Bound. Value Probl. 2010 (2010), 910–919.
  • [7] S. Javeed, D. Baleanu, A. Waheed, M. S. Khan, and H. Affan, Analysis of homotopy perturbation method for solving fractional order differential equations, Mathematics 7 (2019), no. 1, 40, DOI: https://doi.org/10.3390/math7010040.
  • [8] M. Yavuz and N. Ozdemir, Numerical inverse Laplace homotopy technique for fractional heat equations, Therm. Sci. 22 (2018), 185–194, DOI: https://doi.org/10.2298/TSCI170804285Y.
  • [9] A. Elsaid, The variational iteration method for solving Riesz fractional partial differential equations, Comput. Math. Appl. 60 (2010), no. 7, 1940–1947, DOI: https://doi.org/10.1016/j.camwa.2010.07.027.
  • [10] D. D. Ganji, M. Safari, and R. Ghayor, Application of He’s variational iteration method and Adomian’s decomposition method to Sawada-Kotera-Ito seventh-order equation, Numer. Methods Partial Differ. Equ. 27 (2011), no. 4, 887–897, DOI: https://doi.org/10.1002/num.20559.
  • [11] S. Z. Rida, H. M. El-Sherbiny, and A. A. M. Arafa, On the solution of the fractional nonlinear Schrödinger equation, Phys. Lett. A 372 (2008), no. 5, 553–558, DOI: https://doi.org/10.1016/j.physleta.2007.06.071.
  • [12] S. S. Ray and R. K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput. 167 (2005), 561–571, DOI: https://doi.org/10.1016/j.amc.2004.07.020.
  • [13] D. Baleanu, A. H. Bhrawy, and T. M. Taha, A modified generalized Laguerre spectral method for fractional differential equations on the half line, Abstr. Appl. Anal. 2013 (2013), 413529, DOI: https://doi.org/10.1155/2013/413529.
  • [14] M. M. Khader and K. M. Saad, A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method, Chaos Solitons Frac. 110 (2018), 169–177.
  • [15] E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order, Comput. Math. Appl. 62 (2011), no. 5, 2364–2373, DOI: https://doi.org/10.1016/j.camwa.2011.07.024.
  • [16] A. H. Bhrawy, M. A. Zaky, and D. Baleanu, New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method, Rom. Reports Phys. 67 (2015), no. 2, 340–349.
  • [17] X. Y. Wang, Z. S. Zhu, and Y. K. Lu, Solitary wave solutions of the generalised Burgers-Huxley equation, J. Phys. A. Math. Gen. 23 (1990), no. 3, 271–274.
  • [18] T. Taniuti, Reductive perturbation method and far fields of wave equations, Prog. Theor. Phys. Suppl. 55 (1974), 1–35.
  • [19] J. Satsuma, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, World Scientific, Singapore, 1987.
  • [20] A. A. Freihet and M. Zuriqat, Analytical solution of fractional Burgers-Huxley equations via residual power series method, Lobachevskii J. Math. 40 (2019), no. 2, 174–182, DOI: https://doi.org/10.1134/S1995080219020082.
  • [21] M. Inc, M. Partohaghighi, M. A. Akinlar, P. Agarwal, and Y. M. Chu, New solutions of fractional-order Burger-Huxley equation, Results Phys. 18 (2020), 103290, DOI: https://doi.org/10.1016/j.rinp.2020.103290.
  • [22] S. Kumar and P. Pandey, A Legendre spectral finite difference method for the solution of non-linear space-time fractional Burger’s-Huxley and reaction-diffusion equation with Atangana-Baleanu derivative, Chaos Solitons Fractals 130 (2020), 109402, DOI: https://doi.org/10.1016/j.chaos.2019.109402.
  • [23] T. S. El-Danaf, Solitary wave solutions for the generalized Burgers-Huxley equation, Int. J. Nonlinear Sci. Numer. Simul. 8 (2007), no. 3, 315–318, DOI: https://doi.org/10.1515/IJNSNS.2007.8.3.315.
  • [24] B. İnan and A. R. Bahadir, Numerical solutions of the generalized Burgers-Huxley equation by implicit exponential finite difference method, J. Appl. Math. Stat. Inform. 11 (2015), no. 2, 57–67, DOI: https://doi.org/10.1515/jamsi-2015-0012.
  • [25] R. C. Mittal and R. K. Jain, Cubic B-splines collocation method for solving nonlinear parabolic partial differential equations with Neumann boundary conditions, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 12, 4616–4625, DOI: https://doi.org/10.1016/j.cnsns.2012.05.007.
  • [26] R. L. Burden and J. D. Faires, Numerical Analysis, Thomson Brooks/Cole, 2005.
  • [27] M. A. Ramadan, T. S. El-Danaf, and F. E. I. A. Alaal, A numerical solution of the Burgers’ equation using septic B-splines, Chaos Solitons Fractals 26 (2005), no. 4, 1249–1258, DOI: https://doi.org/10.1016/j.chaos.2005.02.019.
  • [28] T. S. El-Danaf and A. R. Hadhoud, Parametric spline functions for the solution of the one time fractional Burgers’ equation, Appl. Math. Model. 36 (2012), no. 10, 4557–4564, DOI: https://doi.org/10.1016/j.apm.2011.11.035.
  • [29] A. Majeed, M. Kamran, M. K. Iqbal, and D. Baleanu, Solving time fractional Burgers’ and Fisher’s equations using cubic B-spline approximation method, Adv. Differ. Equ. 2020 (2020), no. 1, 175, DOI: https://doi.org/10.1186/s13662-020-02619-8.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb8168a1-db51-42eb-8e32-9ebf8a317f92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.