PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The application of modified layered double hydroxides in selective catalytic reduction of nitrogen oxides by ammonia (NH3-SCR)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Selective catalytic reduction with ammonia (NH3-SCR) is very efficient DeNOx technique. According to some problems with the commercial catalyst, novel one should be prepared. Hydrotalcites are potential precursors of the new catalysts of NH3-SCR. In this paper, several attempts to apply these materials in NH3-SCR are presented.
Słowa kluczowe
Rocznik
Strony
61--67
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. The European Parliament and the Council of the European Union. (2010). Directive 2010/75/EU of the European Parilament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union 17.12.2010.
  • 2. Samojeden, B. & Grzybek, T. (2016). The infeuence of the promotion of N-modifed activated carbon with iron on NO removal by NH3-SCR (Selective catalytic reduction). Energy. 116, 1484–1491. DOI: 10.1016/j.energy.2016.04.059.
  • 3. Gao, F., Tang, X., Yi, H., Zhao, S., Li, C., Li, J., Shi Y. & Meng, X. (2017). A Review on Selective Catalytic Reduction of NOx by NH3 over Mn–Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations. Catalysts, 7(7), 199. DOI: 10.3390/catal7070199.
  • 4. Samojeden, B. & Grzybek, T. (2017). The influence of nitrogen groups introduced onto activated carbons by high- or lowtemperature NH3 treatment on SO2 sorption capacity. Adsorpt. Sci. Technol. 35(5–6), 572–581. DOI: 10.1177/0263617417702153.
  • 5. Motak, M., Kuterasiński, Ł., Da Costa, P. & Samojeden, B. (2015). Catalytic activity of layered aluminosilicates for VOC oxidation in the presence of NOx. Comptes Rendus Chim. 18(10), 1106–1113. DOI: 10.1016/j.crci.2015.05.005.
  • 6. Carja, G. & Delahay, G. (2004). Mesoporous mixed oxides derived from pillared oxovanadates layered double hydroxides as new catalysts for the selective catalytic reduction of NO by NH3. Appl. Catal. B. Environ. 47(1), 59–66. DOI: 10.1016/j.apcatb.2003.07.004.
  • 7. Cheng, M., Jiang, B., Yao, S., Han, J., Zhao, S., Tang, X., Zhang, J. & Wang, T. (2018). Mechanism of NH3 Selective Catalytic Reduction Reaction for NOx Removal from Deiesel Engine Exhaust and Hydrothermal Stability of Cu-Mn/Zeolite Catalyst. J. Phys. Chem. 122(1), 455–464. DOI: 10.1021/acs.jpcc.7b09339.
  • 8. Koebel, M., Elsener, M. & Kleemann, M. (2000). UreaSCR: a promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today. 59(3–4), 335–345. DOI: 10.1016/S0920-5861(00)00299-6.
  • 9. Grzybek, T. (2007). Layered clays as SCR deNOx catalysts. Catal. Today. 119(1–4), 125–132. DOI: 10.1016/j.cattod.2006.08.006.
  • 10. Peng, Y., Li, J., Si, W., Luo, J., Wang, Y., Fu, J., Li, X., Crittenden, J. & Hao, J. (2015). Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic. Appl. Catal. B Environ. 168–169, 195–202. DOI: 10.1016/j.apcatb.2014.12.005.
  • 11. Chang, H., Shi, C., Li, M., Zhang, T., Wang, C., Jiang, L., Wang, X. (2018). The effect of cations (NH4 +, Na+, K+, and Ca2+) on chemical deactivation of commercial SCR catalyst by bromides. Chinese J. Catal. 39(4), 710–717. DOI: 10.1016/S1872-2067(18)63011-6.
  • 12. Basąg, S., Kocoł, K., Piwowarska, Z., Rutkowska,M., Baran, R. & Chmielarz, L. (2017). Activating effect of cerium in hydrotalcite derived Cu–Mg–Al catalysts for selective ammonia oxidation and the selective reduction of NO with ammonia. React. Kinet. Mech. Catal. 121(1), 225–240. DOI: 10.1007/s11144-017-1141-y.
  • 13. Wu, X., Feng, Y., Du, Y., Liu, X., Zou, C. & Li, Z. (2019). Enhancing DeNOx performance of CoMnAl mixed metal oxides in low-temperature NH3-SCR by optimizing layered double hydroxides (LDHs) precursor template. Appl. Surf. Sci. 467–468, 802–810. DOI: 10.1016/j.apsusc.2018.10.191.
  • 14. Jabłońska, M., Nothdurft, K., Nocuń, M., Girman, V. & Palkovits, R. (2017). Redox-performance correlations in Ag–Cu–Mg–Al, Ce–Cu–Mg–Al, and Ga–Cu–Mg–Al hydrotalcite derived mixed metal oxides. Appl. Catal. B Environ. 207, 385–396. DOI: 10.1016/j.apcatb.2017.01.079.
  • 15. Chmielarz, L., Jabłońska, M., Strumiński, A., Piwowarska, Z., Węgrzyn, A., Witkowski, S. & Michalik, M. (2013). Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals. Appl. Catal. B Environ. 130–131, 152–162. DOI: 10.1016/j.apcatb.2012.11.004.
  • 16. Xu, Z.P., Zhang, J., Adebajo, M.O., Zhang, H. & Zhou, C. (2011). Catalytic applications of layered double hydroxides and derivatives. Appl. Clay Sci. 53(2), 139–150. DOI: 10.1039/C4CS00160E.
  • 17. Forano, C., Costantino, U., Prévot, V. & Gueho, C.T. (2013). Layered Double Hydroxides (LDH). In F. Bergaya and G. Lagaly (Eds.), Handbook of clay science 745–782. Elsevier.
  • 18. Rives, V. & Ulibarri, M.A. (1999). Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord. Chem. Rev. 181(1), 61–120. DOI: 10.1016/S0010-8545(98)00216-1.
  • 19. Meyn, M., Beneke, K. & Lagaly, G. (1990). Anionexchange reactions of layered double hydroxides. Inorg. Chem. 29(26), 5201–5207. DOI: 10.1021/ic00351a013.
  • 20. Jabłońska, M., Chmielarz, L. & Węgrzyn, A. Chemii, W. (2013). Selektywne katalityczne utlenianie (SCO) amoniaku do azotu i pary wodnej wobec mieszanych tlenków pochodzenia hydrotalkitowego – praca przeglądowa. Chemik. 8, 701–710. YADDA identifi cator: bwmeta1.element.baztech-6167861c0171-499d-b857-8e5d837c4b2f.
  • 21. Prasanna, S.V., Kamath, P.V. & Shivakumara, C. (2007). Synthesis and characterization of layered double hydroxides (LDHs) with intercalated chromate ions. Mater. Res. Bull. 42(6), 1028–1039. DOI: 10.1016/j.materresbull.2006.09.021.
  • 22. Chmielarz, L., Ku, P., Majda, D. & Dziembaj, R. (2002). Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia. Appl. Catal. B Environ. 35, 195–210. DOI: 10.1016/S0926-3373(01)00254-5.
  • 23. Miyata, S. (1983). Anion-Exchange Properties of Hydrotalcite-Like Compounds. Clays Clay Miner. 31(4), 305–311. DOI: 10.1346/CCMN.1983.0310409.
  • 24. Wang, Q., Wu, Z., Tay, H.H., Chen, L., Liu, Y., Chang, J., Zhong, Z., Luo, J. & Borgna, A. (2011). High temperature adsorption of CO2 on Mg-Al hydrotalcite: Effect of the charge compensating anions and the synthesis pH. Catal. Today. 164(1), 198–203. DOI: 10.1016/j.cattod.2010.10.042.
  • 25. Li, K., Kumada, N., Yonesaki, Y., Takei, T., Kinomura, N., Wang, H. & Wang, C. (2010). The pH effects on the formation of Ni/Al nitrate form layered double hydroxides (LDHs) by chemical precipitation and hydrothermal method. Mater. Chem. Phys. 121(1–2), 223–229. DOI: 10.1016/j.matchemphys.2010.01.026.
  • 26. Ghosal, P.S., Gupta, A.K. & Ayoob, S. (2015). Effect of formation pH, molar ratio and calcination temperature on the synthesis of an anionic clay based adsorbent targeting defluoridation. Appl. Clay Sci. 116–117, 120–128. DOI: 10.1016/j.clay.2015.08.026.
  • 27. Comelli, N.,A., Ruiz, M.,L., Aparicio, M.S.L., Merino, N.A., Cecilia, J.A., Rodrínguez-Castellón, E., Lick, I.D. & Ponzi, M.I. (2018). Influence of the synthetic conditions on the composition, morphology of CuMgAl hydrotalcites and their use as catalytic precursor in diesel soot combustion reactions. Appl. Clay Sci. 157, 148–157. DOI: 10.1016/j.clay.2018.02.039.
  • 28. Ramos-Ramírez, E., Ortega, N.L.G., Soto, C.A.C., Gutiérrez, M.T.O. (2009). Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds. J. Hazard. 172(2–3), 1527–1531. DOI: 10.1016/j.jhazmat.2009.08.023.
  • 29. Prinetto, F., Ghiotti, G., Graffi n, P. & Tichit, D. (2000). Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples. Micropor. Mesopor. Mater. 39(1–2), 229–247. DOI: 10.1016/S1387-1811(00)00197-9.
  • 30. Jabłońska, M., Arán, M.A., Beale, A.M., Delahay, G., Petitto, C., Nocuń, M. & Palkovits, R. (2019). Understanding the origins of N2O decomposition activity in Mn(Fe)CoAlOx hydrotalcite derived mixed metal oxides. Appl. Catal. B Environ. 243, 66–75. DOI: 10.1016/j.apcatb.2018.10.010.
  • 31. Wang, Z., Li, Q., Wang, L. & Shangguan, W. (2012). Simultaneous catalytic removal of NOx and soot particulates over CuMgAl hydrotalcites derived mixed metal oxides. Appl. Clay Sci. 55, 125–130. DOI: 10.1016/j.clay.2011.11.003.
  • 32. Mascolo, G. & Mascolo, M.C. (2015). On the synthesis of layered double hydroxides (LDHs) by reconstruction method based on the “memory effect”. Micropor. Mesopor. Mater. 214, 34–36. DOI: 10.1016/j.micromeso.2015.03.024.
  • 33. Rivera, J.A., Fetter, G. & Bosch, P. (2006). Microwave power effect on hydrotalcite synthesis. Micropor. Mesopor. Mater. 89(1–3), 306–314. DOI: 10.1016/j.micromeso.2005.10.041.
  • 34. Zhi, P.X. & Guo, Q.L. (2005). Hydrothermal synthesis of layered double hydroxides (LDHs) from mixed MgO and Al2O3: LDH formation mechanism. Chem. Mater. 17(5), 1055–1062. DOI: 10.1021/cm048085g.
  • 35. Genty, E., Brunet, J., Poupin, C., Casale, S., Capelle, S., Massiani, P., Siffert, S. & Cousin, R. (2015). Co-Al Mixed Oxides Prepared via LDH Route Using Microwaves or Ultrasound: Application for Catalytic Toluene Total Oxidation. Catalysts. 5(2), 851–867. DOI: 10.3390/catal5020851.
  • 36. Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catal. Today. 41(1–3), 53–71. DOI: 10.1016/S0920-5861(98)00038-8.
  • 37. Palmer, S.J., Soisonard, A. & Frost, R.L. (2009). Determination of the mechanism(s) for the inclusion of arsenate, vanadate, or molybdate anions into hydrotalcites with variable cationic ratio. J. Colloid Interface Sci. 329(2), 404–409. DOI: 10.1016/j.jcis.2008.09.065.
  • 38. Palomeque, J., Figueras, F. & Gelbard, G. (2006). Epoxidation with hydrotalcite-intercalated organotungstic complexes. Appl. Catal. A Gen. 300(2), 100–108. DOI: 10.1016/j.apcata.2005.10.037.
  • 39. Liu, K., Xu, Y., Yao, Z., Miras, H.N. & Song, Y.F. (2016). Polyoxometalate-Intercalated Layered Double Hydroxides as Efficient and Recyclable Bifunctional Catalysts for Cascade Reactions. ChemCatChem. 8(5), 929–937. DOI: 10.1002/cctc.201501365.
  • 40. Chen, F., Wu, X., Bu, R. & Yang, F. (2017). Co – Fe hydrotalcites for efficient removal of dye pollutants via synergistic adsorption and degradation. RSC Advances. 7, 41945–41954. DOI: 10.1039/C7RA07417D.
  • 41. Stępniowski, W.J., Norek, M., Michalska-Domańska, M., Bombalska, A., Nowak-Stępniowska, A., Kwaśny, M. & Bojar, Z. (2012). Fabrication of anodic aluminum oxide with incorporated chromate ions. Appl. Surf. Sci. 259, 324–330. DOI: 10.1016/j.apsusc.2012.07.043.
  • 42. Zhou, W., Tian, P., Sun, F., He, M. & Chen, Q. (2016). Highly efficient transformation of alcohol to carbonyl compounds under a hybrid bifunctional catalyst originated from metalloporphyrins and hydrotalcite. J. Catal. 335, 105–116. DOI: 10.1016/j.jcat.2015.11.017.
  • 43. Conterosito, E., Palin, L., Antonioli, D. & Viterbo, D. (2015). Structural Characterisation of Complex Layered Double Hydroxides and TGA-GC-MS Study on Thermal Response and Carbonate Contamination in Nitrate- and Organic-Exchanged Hydrotalcites. Chem.; Eur. J. 21, 14975–14986. DOI: 10.1002/chem.201500450.
  • 44. Ciocan, C.E., Dumitriu, E., Cacciaguerra, T., Fajula, F. & Hulea, V. (2012). New approach for synthesis of Mo-containing LDH based catalysts. Catal. Today. 198(1), 239–245. DOI: 10.1016/j.cattod.2012.04.071.
  • 45. Dobrea, I.D., Ciocan, C.E., Dumitriu, E., Popa, M.I., Petit, E. & Hulea, V. (2015). Raman spectroscopy - Useful tool for studying the catalysts derived from Mo and V-oxyanionintercalated layered double hydroxides. Appl. Clay Sci. 104, 205–210. DOI: 10.1016/j.clay.2014.11.034.
  • 46. Montanari, B., Vaccari, A., Gazzano, M., Kässner, P., Papp, H., Pasel, J., Dziembaj, R., Makowski, W. & Lojewski, T. (1997). Characterization and activity of novel coppercontaining catalysts for selective catalytic reduction of NO with NH3. Appl. Catal. B Environ. 13, 205–217. DOI: 10.1016/S0926-3373(96)00106-3.
  • 47. Twu, J. & Dutta, K. (1990). Decavanadate Ion-Pillared Hydrotalcite: Spectroscopic Studies of the Thermal Decomposition Process. J. Catal. 510, 503–510. DOI: 10.1016/0021-9517(90)90196-Q.
  • 48. Jabłońska, M. & Palkovits, R. (2015). Nitrogen oxide removal over hydrotalcite-derived mixed metal oxides. Catal. Sci. Technol. 6(1), 49–72. DOI: 10.1039/c5cy00646e.
  • 49. Carja, G., Dranca, S., Husanu, E. & Volf, I. (2009). Iron Containing Anionic Clays Supported With Iron Andcerium Oxides As Catalyst Precursors for NOx Reduction. Environ. Eng. Manag. J. 8(3), 553–557. DOI: 10.30638/eemj.2009.076.
  • 50. Wu, X., Feng, Y., Du, Y., Liu, X., Zou, C. & Li, Z. (2019). Enhancing DeNOx performance of CoMnAl mixed metal oxides in low-temperature NH3-SCR by optimizing layered double hydroxides (LDHs) precursor template. Appl.Surf. Sci. 467–468, 802–810. DOI: 10.1016/j.apsusc.2018.10.191 .
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb7fd4cc-a09e-4cb0-bb1b-681fbcb32c19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.