Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The biofouling is a serious technical issue in hydropower facilities operating in a freshwater environment. The presented novel technology of antifouling coating integrates two functionalities of deposited material - biocidal features of copper and superhydrophobicity of the surface. The well-known, low cost copper electroplating process on the steel surface has been modified to achieve a hierarchical micro/nano scaled surface structure. The significantly reduced wettability of the coating surface in combination with biocidal activity of copper increases the surface resistance to biofouling. The influence of selected electroplating parameters in combination with the pretreatment of the substrate steel surface was investigated. The resulted coating surface was tested for durability under slurry flow conditions. Finally, the large component - the intake water filter of hydropower plant - was subject of field testing and was successfully tested for biofouling resistance.
Czasopismo
Rocznik
Tom
Strony
226--235
Opis fizyczny
Bibliogr. 24 poz., fot., rys.
Twórcy
autor
- CIM-mes Projekt Sp.z o.o., Poland
autor
- CIM-mes Projekt Sp.z o.o., Poland
autor
- The Łukasiewicz Research Network – Institute of Precision Mechanics, Poland
autor
- The Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, Poland
autor
- Air Force Institute of Technology, Poland
Bibliografia
- [1] Terlizzi, A., Faimali, M.: Fouling on artificial substrata. In Biofouling. Eds.: Simone D., Thomason J.C. Wiley-Blackwell 2010.
- [2] Kovalak, W.P., Longton, G.D., Smithee, R.D.: Infestation of power plant water systems by the zebra mussel (Dreissena polymorpha power plant water systems by the zebra mussel (Dreissena polymorpha Pallas). In Zebra mussels. Biology, impacts and control. Eds. Nalepa T.F., Schloesser D.W. Lewis Publiszers 1993.
- [3] der Velde, G., Rajagopal, S., bij de Vaate, A. (Eds.): The zebra mussel in Europe. Margraf 2010.
- [4] http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+REPORT+A7-2014-0088+0+DOC+XML+V0//EN.
- [5] Banerjee, I., Pangule, R.C., Kane, R.S.: Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials 23, 6, 2011, 690-718.
- [6] Scardino, A.J., Zhang, H., Cookson, D.J., Lamb, R.N., Nys, R.D.: The role of nano-roughness in antifouling. Biofouling 25, 8, 2009, 757-767.
- [7] Cao, S., Wang, J., Chen, H., Chen, D.: Progress of marine biofouling and antifouling technologies. Chinese Science Bulletin 56, 7, 2011, 598-612.
- [8] Wells, S., Sytsma, M.: A review of the use of coatings to mitigate biofouling in freshwater. Portland State University, Portland, OR, 2009. Accessed Feb, 22, 2018.
- [9] Yebra, D.M., Kiil, S., Dam-Johansen, K.: Antifouling technology - past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings 50, 2, 2004, 75-104.
- [10] Young, T.: III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 95, 1805, 65-87.
- [11] Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry 28, 8, 1936, 988-994.
- [12] Cassie, A.B.D., Baxter, S.: Wettability of porous surfaces. Transactions of the Faraday Society 40, 1944, 546-551.
- [13] Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1, 1997, 1-8.
- [14] Li, Y., Jia, W.Z., Song, Y.Y., Xia, X.H.: Superhydrophobicity of 3D porous copper films prepared using the hydrogen bubble dynamic template. Chemistry of Materials 19, 23, 2007. 5758-5764.
- [15] Zhang, X., Shi, F., Yu, X., Liu, H., Fu, Y., Wang, Z., et. al.: Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. Journal of the American Chemical Society 126, 10, 2004, 3064-3065.
- [16] Darmanin, T., de Givenchy, E.T., Amigoni, S., Guittard, F.: Superhydrophobic surfaces by electrochemical processes. Advanced Materials 25, 10, 2013, 1378-1394.
- [17] Shirtcliffe, N.J., McHale, G., Newton, M.I., Chabrol, G., Perry, C.C.:Dual‐scale roughness produces unusually water‐repellent surfaces. Advanced Materials 16, 21, 2004, 1929 1932.
- [18] Wang, L., Guo, S., Dong, S.: Facile electrochemical route to directly fabricate hierarchical spherical cupreous microstructures: Toward superhydrophobic surface. Electrochemistry Communications 10, 4, 2008, 655-658.
- [19] Shirtcliffe, N.J., McHale, G., Newton, M.I., Perry, C.C.: Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Langmuir 21, 3, 2005, 937-943.
- [20] Lafouresse, M.C., Heard, P.J., Schwarzacher, W.: Anomalous scaling for thick electrodeposited films. Physical Review Letters 98, 23, 2007, 236101.
- [21] Haghdoost, A., Pitchumani, R.: Fabricating superhydrophobic surfaces via a two-step electrodeposition technique. Langmuir 30, 14, 2014, 4183-4191.
- [22] Zhu, H., Guo, Z., Liu, W.: Adhesion behaviors on superhydrophobic surfaces. Chemical Communications 50, 30, 2014, 3900-3913.
- [23] Milionis, A., Loth, E., Bayer, I.S.: Recent advances in the mechanical durability of superhydrophobic materials. Advances in Colloid and Interface Science 229, 2016, 57-79.
- [24] Jokinen, V., Suvanto, P., Garapaty, A. R., Lyytinen, J., Koskinen, J., Franssila, S.: Durable superhydrophobicity in embossed CYTOP fluoropolymer micro and nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects 434, 2013, 207-212.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb7f2569-8c45-4a2f-afa1-a99ee3275b3d