Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Microscopic technology has recently flourished, allowing unparalleled viewing of microscopic elements invisible to the normal eye. Still, the existence of unavoidable constraints led on many occasions to have low contrast scanning electron microscopic (SEM) images. Thus, a noncomplex multiphase (NM) algorithm is proposed in this study to provide better contrast for various SEM images. The developed algorithm contains the following stages: first, the intensities of the degraded image are modified using a two-step regularization procedure. Next, a gamma-corrected cumulative distribution function of the logarithmic uniform distribution approach is applied for contrast enhancement. Finally, an automated histogram expansion technique is used to redistribute the pixels of the image properly. The NM algorithm is applied to natural-contrast distorted SEM images, as well as its results are compared with six algorithms with different processing notions. To assess the quality of images, three modern metrics are utilized, in that each metric measures the quality based on unique aspects. Extensive appraisals revealed the adequate processing abilities of the NM algorithm, as it can process many images suitably and its performances outperformed many available contrast enhancement algorithms in different aspects.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
28--42
Opis fizyczny
Bibliogr. 33 poz., fig., tab.
Twórcy
autor
- Department of Computer Science, College of Computer Science and Mathematics, University of Mosul, Nineveh, Iraq
autor
- Department of Computer Science, College of Computer Science and Mathematics, University of Mosul, Nineveh, Iraq
Bibliografia
- [1] Abdullah-Al-Wadud, M., Kabir, M. H., Dewan, M. A. A., & Chae, O. (2007). A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53(2), 593–600. http://doi.org/10.1109/TCE.2007.381734
- [2] Al‐Ameen, Z. (2018a). An improved contrast equalization technique for contrast enhancement in scanning electron microscopy images. Microscopy Research and Technique, 81(10), 1132–1142. https://doi.org/10.1002/jemt.23100
- [3] Al-Ameen, Z. (2018b). Expeditious contrast enhancement for grayscale images using a new swift algorithm. Statistics, Optimization & Information Computing, 6(4), 577–587. https://doi.org/10.19139/soic.v6i4.436
- [4] Al-Ameen, Z. (2020). Satellite image enhancement using an ameliorated balance contrast enhancement technique. Traitement du Signal, 37(2), 245–254. https://doi.org/10.18280/ts.370210
- [5] Arya, V., Sharma, V., & Arya, G. (2019). An efficient adaptive algorithm for electron microscopic image enhancement and feature extraction. International Journal of Computer Vision and Image Processing, 9(1), 1–16. https://doi.org/10.4018/IJCVIP.2019010101
- [6] Beekman, P., Enciso-Martinez, A., Rho, H. S., Pujari, S. P., Lenferink, A., Zuilhof, H., Terstappen, L.W. M. M., Otto, C., & Le Gac, S. (2019). Immuno-capture of extracellular vesicles for individual multi-modal characterization using AFM, SEM and Raman spectroscopy. Lab on a Chip, 19(15), 2526–2536. https://doi.org/10.1039/C9LC00081J
- [7] Bennet, F., Burr, L., Schmid, D., & Hodoroaba, V. D. (2021). Towards a method for quantitative evaluation of nanoparticle from suspensions via microarray printing and SEM analysis. Journal of Physics: Conference Series, 1953(1), 012002.
- [8] Cakir, S., Kahraman, D. C., Cetin-Atalay, R., & Cetin, A. E. (2018). Contrast enhancement of microscopy images using image phase information. IEEE Access, 6, 3839–3850. https://doi.org/10.1109/access.2018.2796646
- [9] Celik, T. (2014). Spatial entropy-based global and local image contrast enhancement. IEEE Transactions on Image Processing, 23(12), 5298-5308. https://doi.org/10.1109/TIP.2014.2364537
- [10] Chen, J., Yu, W., Tian, J., Chen, L., & Zhou, Z. (2018). Image contrast enhancement using an artificial bee colony algorithm. Swarm and Evolutionary Computation, 38, 287–294. https://doi.org/10.1016/j.swevo.2017.09.002
- [11] Chen, S. D., & Ramli, A. R. (2003). Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Transactions on Consumer Electronics, 49(4), 1301–1309.
- [12] Cocks, E., Taggart, M., Rind, F. C., & White, K. (2018). A guide to analysis and reconstruction of serial block face scanning electron microscopy data. Journal of Microscopy, 270(2), 217–234. https://doi.org/10.1111/jmi.12676
- [13] El Malali, H., Assir, A., Bhateja, V., Mouhsen, A., & Harmouchi, M. (2020). A contrast enhancement model for x-ray mammograms using modified local s-curve transformation based on multi-objective optimization. IEEE Sensors Journal, 21(10), 11543–11554. https://doi.org/10.1109/JSEN.2020.3028273
- [14] Feng, H., Ye, J., & Pease, R. F. (2006). Pattern reconstruction of scanning electron microscope images using long-range content complexity analysis of the edge ridge signal. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 24(6), 3110–3114.
- [15] Hamming, R. W. (1970). On the distribution of numbers. The Bell System Technical Journal, 49(8), 1609–1625. https://doi.org/10.1002/j.1538-7305.1970.tb04281.x
- [16] Hashemi, S., Kiani, S., Noroozi, N., & Moghaddam, M. E. (2010). An image contrast enhancement method based on genetic algorithm. Pattern Recognition Letters, 31(13), 1816–1824.
- [17] Jang, I. S., Kyung, W. J., Lee, T. H., & Ha, Y. H. (2011). Local contrast enhancement based on adaptive multiscale retinex using intensity distribution of input image. Journal of Imaging Science and Technology, 55(4), 1–14.
- [18] Lal, S., & Chandra, M. (2014). Efficient algorithm for contrast enhancement of natural images. International Arab Journal of Information Technology, 11(1), 95–102.
- [19] Lu, C. H., Hsu, H. Y., & Wang, L. (2009, May). A new contrast enhancement technique by adaptively increasing the value of histogram. In 2009 IEEE international workshop on imaging systems and techniques (pp. 407–411). IEEE. https://doi.org/10.1109/IST.2009.5071676
- [20] Ma, H., & Han, L. (2014). Multi-technology integration based on low-contrast microscopic image enhancement. Sensors & Transducers, 163(1), 96–102.
- [21] Mello-Román, J. C., Noguera, J. L. V., Legal-Ayala, H., Pinto-Roa, D. P., Monteiro, M. M., & Colmán, J. C. A. L. (2021). Microscopy mineral image enhancement using multiscale top-hat transform. In 2021 XLVII Latin American Computing Conference (CLEI) (pp. 1–6). IEEE. https://doi.org/10.1109/CLEI53233.2021.9639975
- [22] Min, X., Gu, K., Zhai, G., Liu, J., Yang, X., & Chen, C. W. (2017). Blind quality assessment based on pseudo-reference image. IEEE Transactions on Multimedia, 20(8), 2049–2062.
- [23] Mittal, A., Moorthy, A. K., & Bovik, A. C. (2012). No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 21(12), 4695–4708.
- [24] Ohta, K., Sadayama, S., Togo, A., Higashi, R., Tanoue, R., & Nakamura, K. I. (2012). Beam deceleration for block-face scanning electron microscopy of embedded biological tissue. Micron, 43(5), 612–620. https://doi.org/10.1016/j.micron.2011.11.001
- [25] Parihar, A. S., Verma, O. P., & Khanna, C. (2017). Fuzzy-contextual contrast enhancement. IEEE Transactions on Image Processing, 26(4), 1810–1819. https://doi.org/10.1109/TIP.2017.2665975
- [26] Pei, S. C., Zeng, Y. C., & Chang, C. H. (2004). Virtual restoration of ancient Chinese paintings using color contrast enhancement and lacuna texture synthesis. IEEE Transactions on Image Processing, 13(3), 416–429. https://doi.org/10.1109/TIP.2003.821347
- [27] Sengee, N., Sengee, A., & Choi, H. K. (2010). Image contrast enhancement using bi-histogram equalization with neighborhood metrics. IEEE Transactions on Consumer Electronics, 56(4), 2727–2734. https://doi.org/10.1109/TCE.2010.5681162
- [28] Shukri, N. M., Sim, K. S., & Leong, J. W. (2016). Minimum mean brightness error quad histogram equalization for scanning electron microscope images. In 2016 International Conference on Robotics, Automation and Sciences (ICORAS) (pp. 1–6). IEEE. https://doi.org/10.1109/ICORAS.2016.7872601
- [29] Sim, K. S., Teh, V., Tey, Y. C., & Kho, T. K. (2016). Local dynamic range compensation for scanning electron microscope imaging system by sub‐blocking multiple peak HE with convolution. Scanning, 38(6), 492–501. https://doi.org/10.1002/sca.21285
- [30] Sim, K. S., Ting, F. F., Leong, J. W., & Tso, C. P. (2019). Signal-to-noise ratio estimation for SEM single image using cubic spline interpolation with linear least square regression. Engineering Letters, 27(1), 151–165.
- [31] Sutton, M. A., Li, N., Joy, D. C., Reynolds, A. P., & Li, X. (2007). Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000. Experimental Mechanics, 47(6), 775–787. https://doi.org/10.1007/s11340-007-9042-z
- [32] Vladár, A. E., Postek, M. T., & Ming, B. (2009). On the sub-nanometer resolution of scanning electron and helium ion microscopes. Microscopy Today, 17(2), 6–13. https://doi.org/10.1017/S1551929500054420
- [33] Wighting, M. J., Lucking, R. A., & Christmann, E. P. (2004). The latest in handheld microscopes. Science Scope, 6, 58–61.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb7dfd4b-fe06-497c-a37f-82fde7237501