PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Granular computational homogenisation of composite structures with imprecise parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the formulation of a granular computational homogenisation problem and the proposition of a method to solve it, which enables multiscale analysis of materials with uncertain microstructure parameters. The material parameters and the geometry, represented by the interval and fuzzy numbers, are assumed to be unprecise. An _-cut representation of fuzzy numbers allows the use of interval arithmetic for epistemic uncertainties. Directed interval arithmetic is used to reduce the effect of interval widening during arithmetic operations. Response surfaces of diverse types, including Artificial Neural Networks, are used as model reduction methods. The finite element method is employed to solve the boundary value problem on a micro scale. Numerical examples are provided to demonstrate the effectiveness of the proposed approach.
Rocznik
Strony
271--300
Opis fizyczny
Bibliogr. 71 poz., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Department of Computational Mechanics and Engineering, Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Department of Computational Mechanics and Engineering, Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. S.W. Tsai, H.T. Hahn, Introduction to Composite Materials, Technomic Publishing Company, Lancaster, 1980.
  • 2. S.G. Advani, E.M. Sozer, Process Modeling in Composites Manufacturing, Marcel Dekker, New York, 2003.
  • 3. J. Ptaszny, P. Fedelinski, G. Dziatkiewicz, Boundary element method modelling of nanocomposites, International Journal for Multiscale Computational Engineering, 12, 1, 33–43, 2014.
  • 4. J. Ptaszny, M. Hatłas, Evaluation of the FMBEM efficiency in the analysis of porous structures, Engineering Computations, 35, 2, 843–866, 2018.
  • 5. J. Ptaszny, A fast multipole BEM with higher-order elements for 3-D composite materials, Computers & Mathematics with Applications, 82, 15, 148–160, 2021.
  • 6. T.S. Mesogitis, A.A. Skordos, A.C. Long, Uncertainty in the manufacturing of fibrous thermosetting composites: a review, Composites Part A: Applied Science and Manufacturing, 57, 67–75, 2014.
  • 7. M. Kaminski, Homogenization of particulate and fibrous composites with some non-Gaussian material uncertainties, Composite Structures, 210, 778–786, 2019.
  • 8. M.A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D.W. Apley, C. Brinson, W. Chen, W.K. Liu, A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality, Computer Methods in Applied Mechanics and Engineering, 320, 633–667, 2017.
  • 9. R. Bostanabad, B. Liang, J. Gao, W.K. Liu, J. Cao, D. Zeng, X. Su, H. Xu, Y. Li, W. Chen, Uncertainty quantification in multiscale simulation of woven fiber composites, Computer Methods in Applied Mechanics and Engineering, 38, 506–532, 2018.
  • 10. B. Möller, M. Beer, Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics, Springer, Berlin, Heidelberg, 2004.
  • 11. M. Kaminski, M. Kleiber, Perturbation based stochastic finite element method for homogenization of the two-phase elastic composites, Computers and Structures, 78, 811–826, 2000.
  • 12. W. Beluch, T. Burczynski, Two-scale identification of composites’ material constants by means of computational intelligence methods, Archives of Civil and Mechanical Engineering, 14, 636–646, 2014.
  • 13. S. Naskar, T. Mukhopadhyay, S. Sriramula, Spatially varying fuzzy multi-scale uncertainty propagation in unidirectional fibre reinforced composites, Composite Structures, 209, 940–967, 2019.
  • 14. W. Beluch, M. Hatłas, Numerical homogenization of inhomogeneous media with imprecise parameters, Computer Methods in Mechanics, AIP Conference Proceedings, 1922, 1–7, 2017.
  • 15. A.I. Khuri, J.A. Cornell, Response Surfaces: Designs and Analyses, 2nd ed., CRC Press, Boca Raton, 1996.
  • 16. M.S. Kothari, K.G. Vegad, K.A. Shah, A. Aly Hassan, An artificial neural network combined with response surface methodology approach for modelling and optimization of the electro-coagulation for cationic dye, Heliyon, 8, 1, e08749, 2022.
  • 17. E.R. Hansen, A generalized interval arithmetic, [in:] K. Nickel [ed.], Interval Mathematics, Lecture Notes in Computer Science, 29, 7–18, 1975.
  • 18. B. Sendov, Some Topics of Segment Analysis, Interval Mathematics, K. Nickiel [ed.], Academic Press, pp. 203–222, New York, 1980.
  • 19. S.M. Markov, On directed interval arithmetic and its applications, Journal of Universal Computer Science, 1, 514–526, 1995.
  • 20. T.-W. Hou, Microstructural Design of Fiber Composites, Cambridge University Press, Cambridge, 1992.
  • 21. J. Ptaszny, P. Fedelinski, Numerical homogenization of polymer/clay nanocomposites by the boundary element method, Archives of Mechanics, 63, 517–532, 2011.
  • 22. J. Ptaszny, Accuracy of the fast multipole boundary element method with quadratic elements in the analysis of 3D porous structures, Computational Mechanics, 56, 3, 477–490, 2015.
  • 23. T. Czyz, G. Dziatkiewicz, P. Fedelinski, R. Górski, J. Ptaszny, Advanced Computer Modelling in Micromechanics, Silesian University of Technology Press, Gliwice, 2013.
  • 24. M. Hatłas, W. Beluch, Multiscale global identification of porous structures, Computer Methods in Mechanics, AIP Conference Proceedings, 1922, 1–7, 2017.
  • 25. W. Beluch, A. Długosz, Multiobjective and multiscale optimization of composite materials by means of evolutionary computations, Journal of Theoretical and Applied Mechanics, 52, 2, 397–409, 2016.
  • 26. D. Gross, T. Seelig, Fracture Mechanics, with an Introduction to Micromechanics, Springer, Berlin, Heidelberg, 2006.
  • 27. T. Lewinski, J. Telega, Plates, laminates and Shells: Asymptotic Analysis and Homogenization, World Scientific, 2000.
  • 28. A. Belkhabbaz, R. Brenner, N. Rupin, B. Brigitte, J. Fonseca, Prediction of the overall behavior of a 3D microstructure of austenitic steel by using FFT numerical scheme, Procedia Engineering, 10, 1883–1888, 2011.
  • 29. O. Pierard, C. Friebel, I. Doghri, Mean-field homogenization of multi-phase thermoelastic composites: a general framework and its validation, Composites Science and Technology, 64, 1587–1603, 2004.
  • 30. T. Zohdi, P. Wriggers, An Introduction to Computational Micromechanics, Springer, Berlin, Heidelberg, 2005.
  • 31. M. Geers, V. Kouznetsova, K. Matous, J. Yvonnet, Homogenization methods and multiscale modeling: Nonlinear problems, Encyclopedia of Computational Mechanics, 2nd ed., pp. 1–34, 2017.
  • 32. R. Hill, Elastic properties of reinforced solids: some theoretical principles, Journal of the Mechanics and Physics of Solids, 11, 357–372, 1963.
  • 33. M.G.D. Geers, V. Kouznetsova, T. Massart, I. Özdemir, E.W.C. Coenen, W.A.M. Brekelmans, R.H.J. Peerlings, Computational homogenization of structures and materials, Proceedings of the 9th Neuvième Colloque National en Calcul des Structures, Giens, France, pp. 17–28, 2009.
  • 34. L. Bos, P. Gibson, M. Kotchetov, M.A. Slawinski, Classes of anisotropic media: a tutorial, Studia Geophisica et Geodaetica, 48, 265–287, 2004.
  • 35. S. Gatea, T. Jwad, F. Chen, H. Ou, Micromechanical modeling of the deformation and damage behavior of al6092/sic particle metal matrix composites, Journal of Materials Engineering and Performance, 2023, doi: 10.1007/s11665-023-07907-4.
  • 36. L.A. Zadeh, Fuzzy sets and information granularity, [in:] N. Gupta, R. Ragade, R, Yager [eds.], Advances in Fuzzy Set Theory and Applications, pp. 3–18, Amsterdam, North Holland, 1979.
  • 37. A.A. Ramli, J. Watada, W. Pedrycz, Information granules problem: an efficient solution of real-time fuzzy regression analysis, [in:] W. Pedrycz, S.M. Chen [eds.], Information Granularity, Big Data, and Computational Intelligence. Studies in Big Data, 8, Springer, Cham, 2015.
  • 38. A. Bargiela, W. Pedrycz, Toward a theory of granular computing for human-centred information processing, IEEE Transactions on Fuzzy Systems, 16, 2, 320–330, 2008.
  • 39. J.T. Yao, A ten-year review of granular computing, Proceeding of 2007 IEEE International Conference on Granular Computing, Silicon Valley, USA, pp. 734–739, 2007.
  • 40. B.M. Ayyub, Uncertainty Modeling and Analysis in Civil Engineering, CRC Press, Boca Raton, 1997.
  • 41. L.A. Zadeh, Fuzzy sets, Information and Control, 8, 338–353, 1965.
  • 42. D. Dubois, H. Prade, Operations on fuzzy numbers, International Journal of Systems Science, 9, 613–626, 1978.
  • 43. M. Hanss, Applied Fuzzy Arithmetic, Springer, Berlin, 2005.
  • 44. M.L. Guerra, L. Stefanini, Approximate fuzzy arithmetic operations using monotonic interpolations, Fuzzy Set and Systems, 150, 5–33, 2005.
  • 45. P.R. Halmos, Naive Set Theory, Springer, New York, 1974.
  • 46. L. Jaulin, M. Kieffer, O. Didrit, E. Water, Applied Interval Analysis, Springer, London, 2001.
  • 47. B. Hayes, A lucid interval, American Scientist, 91, 6, 484–488, 2003.
  • 48. S.M. Markov, On direct interval arithmetic and its applications, Journal of Universal Computer Science, 1, 7, 514–526, 1995.
  • 49. E.D. Popova, Multiplication distributivity of proper and improper intervals, Reliable Computing, 7, 129–140, 2001.
  • 50. S.M. Markov, Extended interval arithmetic involving infinite intervals, Mathematica Baltanica, 6, 269–304, 1992.
  • 51. A. Piasecka-Belkhayat, Interval boundary element method for imprecisely defined unsteady heat transfer problems [in Polish], Publishing House of Silesian University of Technology, Monographs, 321, Gliwice, 2011.
  • 52. P.R. Nelson, M. Coffin, K.A.F. Copeland, Response surface methods, P.R. Nelson, M. Coffin, A.F.K. Copeland [eds.], Introductory Statistics for Engineering Experimentation, pp. 395–423, Academic Press, Cambridge, 2003.
  • 53. D. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York, 2012.
  • 54. L.W. Friedman, The Simulation Metamodeling, Springer, Boston, 1996.
  • 55. L. Prozato, W. Müller, Design of computer experiments: space filling and beyond, Statistics and Computing, 22, 681–701, 2012.
  • 56. J.P.C. Kleijnen, Response Surface Methodology, [in:] M. Fu [ed.], Handbook of Simulation Optimization. International Series in Operations Research and Management Science, 216, Springer, New York, 2015.
  • 57. L. Rutkowski, Computational Intelligence: Methods and Techniques, Springer, Berlin, 2008.
  • 58. J. Hertz, R.G. Palmer, A.S. Krogh, Introduction to the Theory of Neural Computation, Perseus Books, New York, 1990.
  • 59. M.T. Hagan, M. Menhaj, Training feed-forwards networks with Marquardt algorithm, IEEE Transactions on Neural Networks, 5, 989–993, 1994.
  • 60. Ansys Inc.: Theory Reference, Release 19.0 documentation for ANSYS, 2018.
  • 61. M. Hatłas, Modelling and Optimisation of Inhomogeneous Materials Using Granular Computations, PhD Thesis, Gliwice, 2021.
  • 62. J. German, Basics of Fibre-reinforced Composite Mechanics, Cracow University of Technology, Cracow, 1996 [in Polish].
  • 63. G.G. Tibbetts, C.P. Beetz, Mechanical properties of vapour-grown carbon fibres, Journal of Physics D: Applied Physics, 20, 3, 292–297, 1987.
  • 64. E. Giner, A. Vercher, M. Marco, Estimation of the reinforcement factor _ for calculating E_2 with the Halpin-Tsai equations using the finite element method, Composite Structures, 124, 402–408, 2015.
  • 65. Y. Fan, H. Wang, A simple Python code for computing effective properties of 2D and 3D representative volume element under periodic boundary conditions, Project: Reanalysis Assisted Global Optimization, Cornell University, 2017.
  • 66. B. Chatterjee, P. Sahoo, Effect of strain hardening on elastic-plastic contact of a deformable sphere against a rigid flat under full stick contact condition, Advances in Tribology, 2012, Article ID 472794, 8 pages, 2012.
  • 67. D. Deschuyteneer, F. Petit, M. Gonon, F. Cambier, Influence of large particle size – up to 1.2mm – and morphology on wear resistance in NiCrBSi/WC laser cladded composite coatings, Surface & Coatings Technology, 311, 365–373, 2017.
  • 68. L.I. Tushinsky, I. Kovensky, A. Plokhov, V. Sindeyev, P. Reshedko, Coated metal. Structure and properties of metal-coating compositions, Engineering Materials, Springer, New York, 2002.
  • 69. Z. Hu, R. Karki, Prediction of mechanical properties of three-dimensional fabric composites reinforced by transversely isotropic carbon fibers, Journal of Composite Materials, 49, 1513–1524, 2015.
  • 70. I. Cohen, Simple algebraic approximations for the effective elastic moduli of cubic arrays of spheres, Journal of the Mechanics and Physics of Solids, 52, 2167–2183, 2004.
  • 71. G. Shao, J. Su, Sensitivity and inverse analysis methods for parameter intervals, Journal of Rock Mechanics and Geotechnical Engineering, 2, 3, 274–280, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb7cfa02-1fc3-4fe6-9d09-ae19febcbf0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.