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The paper presents the formulation of a granular computational ho-
mogenisation problem and the proposition of a method to solve it, which enables
multiscale analysis of materials with uncertain microstructure parameters. The mate-
rial parameters and the geometry, represented by the interval and fuzzy numbers, are
assumed to be unprecise. An α-cut representation of fuzzy numbers allows the use of
interval arithmetic for epistemic uncertainties. Directed interval arithmetic is used to
reduce the effect of interval widening during arithmetic operations. Response surfaces
of diverse types, including Artificial Neural Networks, are used as model reduction
methods. The finite element method is employed to solve the boundary value problem
on a micro scale. Numerical examples are provided to demonstrate the effectiveness
of the proposed approach.
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1. Introduction

Inhomogeneous materials, such as composites or porous materials,
are becoming an increasingly important group in modern engineering because
they may possess properties that are unavailable to homogeneous structural ma-
terials. As a result, they are widely used in many industries such as mechan-
ical, automotive, marine, aerospace, etc. The macroscopic mechanical proper-
ties of inhomogeneous materials are strongly determined by their microscopic
structure [1]. The development of composite manufacturing technology allows
the creation of composites with specific macroscopic properties [2]. Disregarding
phenomena occurring at lower scales may result in creating models that do not
adequately reflect the behaviour of real materials. This requires the creation of
a model which takes into account the different scales of the material – from the
macro scale, where elements such as various external loads (mechanical, ther-
mal, electrical, etc.) are taken into account, through the micro scale, taking into
account e.g. discontinuities and surface imperfections (e.g. cracks, inclusions,
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voids) to the nano scale, where e.g. defects in the crystal lattice can be taken
into account. The relationship between the behaviour of the model at different
scales is determined by the physical laws that correspond to each scale. The
micro and macro scales are usually connected by the stress/strain state at each
point in the material structure described by the constitutive law of the material.

The direct application of more than one scale in numerical calculations using
one of the computational methods, such as the finite element method (FEM)
or the boundary element method (BEM), leads to systems of equations with
such a large number of degrees of freedom that a solution is usually not achiev-
able with current computational capabilities. Homogenisation methods allow ob-
taining a macroscopically homogeneous medium equivalent to a microscopically
heterogeneous one [3–5].

Typically, deterministic values of the input properties are assumed in the ho-
mogenisation procedure. However, due to manufacturing processes and measure-
ment errors, it should be assumed that the properties of composite components
are uncertain [6]. In this case, the macroscopic parametric values calculated using
homogenisation methods are also uncertain.

Uncertain multiscale problems are considered by many authors. For example,
a stochastic strategy and its implementation in a form of the Stochastic Finite
Element Method for computational homogenisation of two-component particu-
late and fibrous composites with non-Gaussian random material characteristics
is presented in [7]. In [8], a computational framework that combines the de-
sign of the experiment, computational homogenisation, and machine learning
for data-driven analysis of composite materials under uncertainty is proposed.
A sampling method that allows modelling non-stationary and spatial variations
of uncertainty sources by creating nested random fields is proposed and applied
in [9] for woven fibre composites.

According to [10], there exist three types of uncertainty: stochastic, informal
(epistemic), and lexical. Uncertainty analysis methods are typically based on
probabilistic analysis with stochastic input parameters, which allows consider-
ation of linear and non-linear structures [11, 12]. To determine the statistical
distribution of the input properties, a large number of experiments and mea-
surements must be performed, which is usually time-consuming. For composite
structures made in small series or individually, this information may not be avail-
able. In this case, a fuzzy or interval-based approach can be used to take into
account the effects of epistemic uncertainty [13].

The direct use of fuzzy and interval calculations to solve boundary value prob-
lems and related linear systems of equations would result in a widening of output
quantities, which is particularly inconvenient for complex numerical models [14].
Therefore, it may be beneficial to replace the full model with a metamodel that
additionally may reduce the computational effort [15, 16].
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An interval representation of fuzzy sets by α-cuts allows one to use interval
arithmetic both for interval and fuzzy representation of uncertainties. There ex-
ist a few modifications of classic interval arithmetic that provide narrower final
intervals, such as generalised interval arithmetic [17], segment analysis [18] or
directed interval arithmetic [19]. The directed interval arithmetic can be consid-
ered a versatile and efficient technique.

The paper presents the formulation of a novel Granular Computational Ho-
mogenisation (GCH) problem and proposes an approach to its solution. Selected
properties of the microstructure, i.e. geometry or constituent material param-
eters, are assumed to be imprecise and described using fuzzy numbers. The
representation of the numbers involves α-cuts and directed interval arithmetic.
Homogenisation requires the solution of boundary-value problems on the micro-
scale, i.e. analysis of representative volume elements (RVEs) using FEM. As
interval arithmetic uses the homogenisation results and requires many FEM
simulations, the presented approach replaces the analyses with metamodels: re-
sponse surfaces (RS) or neural networks. An application of metamodeling allows
one to significantly reduce computational effort. The metamodeling process is
preceded by the appropriate design of experiment, covering the domain of un-
certain microstructure parameters. The minimised number of time-consuming
FEM analyses makes the process robust. As a result of the whole GCH process,
one obtains imprecise effective material constants represented by fuzzy numbers.
One can use these imprecise constants to the uncertain description of a model
of the structure on the macro scale.

The structure of the paper reflects the particular stages of the GCH solution
process described in the above paragraph and is composed as follows. Section 2
introduces the concept of computational homogenisation. Section 3 describes
granular calculations involving fuzzy numbers, interval numbers and directed in-
terval arithmetic. Section 4 is devoted to model order reduction methods in the
form of RS. The proposed Granular Computational Homogenisation approach
is described in Section 5. Numerical examples that demonstrate the effective-
ness of the proposed approach are collected in Section 6. The paper ends with
conclusions (Section 7).

2. Computational homogenisation

Homogenisation is a part of multiscale modelling that allows one to model
a structure at different length scales. This approach allows the analysis of mate-
rials that are inhomogeneous on the microscale, such as fibre-reinforced compos-
ites [20], particle-reinforced composites [21] or porous structures [22]. Multiscale
problems concern the evaluation [23], identification [24], and optimisation [25]
of material behaviour.
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The use of homogenisation methods, which are part of multiscale calculations,
allows one to obtain a macroscopically equivalent material model to a given inho-
mogeneous material by representing the macroscopic quantities of this material
with variables that describe the state of the microstructure and its parame-
ters [26]. Analytical homogenisation methods, such as asymptotic homogenisa-
tion [27], fast Fourier transform homogenisation [28] or semi-analytical mean-
field homogenisation [29], have low computational requirements, but can only be
used for simplified microstructure geometries and simple material models.

Unlike analytical and semi-analytical homogenisation methods, computa-
tional homogenisation can be applied effectively to the analysis of complex
structures having linear and non-linear constitutive relationships [30]. Accord-
ing to [31], different variants of computational homogenisation allow considering
different non-linearities, including path- and time-dependent models. Computa-
tional homogenisation uses numerical methods such as FEM or BEM to solve
boundary value problems (BVPs) that describe the behaviour of a material at
particular scales.

Computational homogenisation typically uses the representative volume el-
ement (RVE) concept. The RVE should represent the structure of the entire
medium (or part of it in the case of local periodicity) and therefore contain all
the information required to fully describe both the structure and properties of
that medium [32]. The dimensions of the RVE are noticeably larger than the
characteristic microscale dimensions and significantly smaller than the macro-
scale dimensions [33]. Moreover, the following conditions must be satisfied:
• The Hill–Mandel condition for the equality of microscopic mean energy

density and macroscopic energy density at the point in the macrostructure
corresponding to the location of the RVE:

(2.1) 〈σijεij〉 = 〈σij〉〈εij〉,

where σij , εij are micro stress and strain tensors, respectively, 〈·〉 is the
averaged value of the field under consideration:

(2.2) 〈·〉 =
1

|V |

∫
V

(·) dV,

where V is the RVE domain.
• One of the prescribed boundary conditions satisfying the Hill–Mandel con-

dition, e.g. in the form of:

(i) periodic boundary conditions:

(2.3) u+
i − u

−
i = 〈εij〉 · (x+

i − x
−
i ), t+i = −t−i , ∀x ∈ Γ : n+

i = −n−i ,
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where u+
i , u

−
i are displacements of the corresponding points at the

opposite RVE boundaries, x+
i , x

−
i represent locations of the corre-

sponding points at the opposite RVE boundaries, t+i , t
−
i are tractions

on the corresponding points at the opposite RVE boundaries, n+
i , n

−
i

denote normal vectors at the opposite RVE boundaries, Γ is the ex-
ternal boundary of RVE,

(ii) linear displacement boundary conditions:

(2.4) uj |Γ = εijxi → 〈εij〉 = εij ,

(iii) uniform traction boundary conditions:

(2.5) tj |Γ = σijni → 〈σij〉 = σij .

The averaged value of micro-stresses can be presented in terms of boundary
reaction forces as:

(2.6) 〈σij〉 =
1

|V |

∫
V

(σij) dV =
1

|V |

∫
Γ

(ti · xj) dΓ =
1

|V |

n∑
k=1

fik · yjk,

where fin is a reaction force on i-th direction of the n-th boundary node,
yjn represents the location in the j-th direction of the n-th boundary node.

In the case of the homogenisation procedure for materials in which the
stress/strain relationship is linear, there is no need to analyse the RVE for
each point of macrostructure, as there is an analytical model that represents
the material properties at the macroscopic scale. To obtain equivalent proper-
ties, described by a 4th order material tensor, a number of analyses of RVE with
specific boundary conditions have to be done. The number of analyses depends
on the anisotropy type [34]. In the case of orthotropic material, 6 tests should
be performed with unitary strain conditions (for each strain tensor component).
An orthotropic material can be described by 9 independent stiffness coefficients,
representing the stress/strain relationship, which can be expressed in the Voigt
notation as:

(2.7)



σ11

σ22

σ33

σ23

σ13

σ12

 =



C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

sym C55 0
C66





ε11

ε22

ε33

2ε23

2ε13

2ε12

 ,

where σij and εij are stress and strain tensor components, respectively, while
Cij are stiffness tensor components.
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Computational homogenisation of non-linear materials involves the determi-
nation of a non-linear macro stress-strain relation. The process requires the solu-
tion of non-linear BVP in the micro-scale. The loading is applied incrementally.
Each increase in loading causes change in the effective material constants [26].
Homogenisation results can be either effective tangent stiffness coefficients or
the stress-strain relation. One can use experimental or numerical tests on non-
homogeneous materials to develop the stress-strain relation, e.g. [35]. The present
work uses a metamodel based on computational experiments and artificial neural
network for the non-linear material.

3. Granular computations

The computational homogenisation methods presented in the previous Sec-
tion can be enhanced to solve homogenisation problems with uncertain input
data, e.g. by introducing granular computing methods.

Granular computing is a computing paradigm related to the processing of
collections of complex units of information called grains or granules [36]. If the
parameters of a system cannot be determined precisely, they can be treated as
uncertain and modelled as grains of information [37]. Information grains are an
element of abstraction found essentially everywhere, which is related to the hu-
man, intuitive – way of thinking, providing a link between the analogue real
world and its digital representation in computing systems. Humans commu-
nicate with the outside world by building up and processing grains of infor-
mation. The process of their creation is called information granulation. It can
be granular in a spatial sense (spatial granulation) as well as in a temporal
sense (temporal granulation). Information granules can be grouped according
to similarity, coherence, indistinguishability, functional or geometric proximity
criteria [38].

Each problem can be treated at various levels of granularity. Choosing the
appropriate granularity allows relevant information to be made visible, and or
details considered irrelevant to be omitted. Reducing grain size results in the in-
clusion of more detailed information, leading to higher computational costs [39].
In mechanical systems, granularity models related to uncertainties arising from
both design and manufacturing processes are significant, and the analysis of un-
certain data is crucial for the safety of the product [40]. The most commonly
used granularity models for uncertainty include rough sets, interval numbers,
fuzzy numbers and random variables.

Granular calculations can be introduced into the numerical homogenisation
procedure. The uncertainties that can be used as model parameters can be re-
lated to geometry, material properties, loads, or boundary conditions. As a result
of the analysis, a range of estimated quantities can be obtained. In the present
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study, fuzzy numbers and interval numbers are considered uncertainty models.
To reduce the problems with the application of classical interval arithmetic op-
erations, directed interval arithmetic is applied.

3.1. Fuzzy numbers

According to [41], a fuzzy set is a class of objects with a continuous mem-
bership degree. If X is a nonempty set, a fuzzy set Ã in X is characterized by
its membership function µÃ(x) such as µÃ : X→ [0, 1]. Consequently, Ã is fully
determined by a set of pairs:

(3.1) Ã = {(x, µÃ(x)); x ∈ X}.

A fuzzy set defined in a real vector space which is normal (the maximum
value of its membership function is equal to one), convex, and its membership
function is piecewise continuous, is called a fuzzy number ã [42]. An extension
principle allows us to apply the arithmetic operations performed on traditional
sets to fuzzy numbers [43]. Unfortunately, the application of fuzzy arithmetic to
solving systems of fuzzy equations is complicated as there are no fuzzy operations
opposite to addition and reverse to multiplication.

To simplify fuzzy arithmetic operations, specific types of fuzzy numbers can
be used, such as triangular or trapezoidal fuzzy numbers. A triangular fuzzy
number can be represented as an ordered triple ã = (a−, a0, a

+). Triangular
fuzzy numbers can be effectively applied to describe uncertain parameters with
a known value and an estimation error, e.g. determined by an experiment. The
use of triangular fuzzy numbers allows the simplification of basic arithmetic
operations on fuzzy numbers [44]. An efficient method to avoid complex arith-
metic operations on fuzzy numbers is to decompose the fuzzy number into a set

Fig. 1. Triangular fuzzy number and sample α-cuts (α = 0.25, α = 0.8).
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of α-cuts. The α-cut of a fuzzy set Ã in the space X is a non-fuzzy set for the
values of the membership function are not less than α, for each α ∈ [0,1]. The
α-cut of triangular fuzzy number ã is a set of closed intervals:

(3.2) ∀α ∈ [0, 1] ãα = [(a0 − a−)α+ a−, (a0 − a+)α+ a+].

Any fuzzy set can be described as the sum of all its α-cuts. A triangular
fuzzy set with exemplary α-cuts is presented in Fig. 1. The operations on fuzzy
numbers described by α-cuts can be performed using interval number arithmetic,
as presented in the next section.

3.2. Interval numbers and interval arithmetic

In issues where only a finite range of uncertain parameter values is known,
interval numbers enable the representation of uncertainty. The interval represen-
tation of a single number is defined as [45]:

(3.3) ā = [a−, a+] = {a ∈ ā : a− ≤ a ≤ a+},

where a− and a+ ∈ R are left and right ends of the interval ā, respectively.
In contrast to fuzzy numbers, for interval numbers only two values of the

membership function are possible: 1 if the number belongs to an interval, or 0 if
the number does not belong to it. The interval is called degenerate if a− = a+.

The classical version of interval arithmetic is based on extended arithmetic
for real numbers. Basic operations in classical interval arithmetic are addition,
subtraction, multiplication, division, multiplication by scalar, and inverse of an
interval [46]. The main disadvantage of classical interval arithmetic is the lack of
additive and multiplicative inverses [47]. As a result, the interval widening occurs
when solving interval systems of equations, e.g. by means of an interval Gaussian
algorithm described further. The widening of an interval is a result of a series of
calculations necessary to obtain a final solution. This effect can be significantly
reduced by using the directed interval arithmetic. A directed interval number ā
is an ordered pair of real numbers:

(3.4) ā = [a−, a+] = {a ∈ D},

where D is a set composed of all possible (proper and improper) directed interval
numbers with real ends: a−, a+ ∈ R [48].

Depending on the position of the ends of the intervals, the directed interval
numbers can be divided into proper (if a− < a+) and improper (if a− ≥ a+),
so D = P ∪ I, where P is a set of all proper interval numbers, I is a set of all
improper interval numbers.
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Directed interval arithmetic includes basic operations in the form of addition,
subtraction, multiplication, and division. Moreover, directed interval arithmetic
allows one to define new operators [49]:

(3.5) ∀ā ∈ D −Dā = [−a−, a+],

and:

(3.6) ∀ā ∈ D \ Z 1/Dā =

[
1

a−
,
−1

a+

]
,

where: Z = ZP ∪ ZI contains all (proper and improper) directed intervals with
element 0:

(3.7)
ZP = {ā ∈ P : a− ≤ 0 ≤ a+},
ZI = {ā ∈ I : a+ ≤ 0 ≤ a−}.

On the basis of them, two directed operations are introduced, namely:
– directed subtraction:

(3.8) ∀ā, b̄ ∈ D ā−D b̄ = [a− − b−, a+ − b+],

– directed division:

(3.9) ā/Db̄ =

{
[a−σ(b̄)/b−σ(ā), aσ(b̄)/bσ(ā)], ā, b̄ ∈ D\Z,
[a−σ(b̄)/bσ(b̄), aσ(b̄)/bσ(b)], ā ∈ Z, b̄ ∈ D\Z,

where the ‘sign’ functional σ is defined as:

(3.10) ∀ā ∈ D\Z σ(ā) =


+ if a− ≥ 0,

− if a+ ≤ 0,

+ if a− = a+ = 0.

The σ and −σ used in the superscript indicate whether the left or right end
of an interval appears in the formula (e.g. a+ or a−), depending on whether it
is a proper or improper number. In particular, −σ changes specific end from left
to right or right to left, respectively.

As a result, the operations ā−D ā = 0̄ and ā/Dā = 1̄ can be obtained. They
allow for the efficient solution of interval equations with a significant reduction
in interval widening [50]. A comparison of the results obtained using the classical
and directed interval arithmetic shows much narrower outcome intervals for the
latter approach [51].
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4. Response surfaces

Granular computations described in the previous section involve multiple
evaluations of the function under consideration. When the FEM is applied to
evaluate such a function, the calculations may be time- and memory-consuming
due to preprocessing, solution of the system of equations and postprocessing.
One can reduce the cost by, e.g. using response surfaces.

Response surfaces (RS) belong to model reduction methods [52]. They allow
one to build a metamodel representing the output parameters on the basis of
an analysis of the results for the parameterised model. RS represents an ap-
proximate parametric model of the original system created from a precalculated
set of models with various input parameter values. The accuracy of the meta-
model is significantly dependent on the number of data points, the shape of
the exact response function that is approximated, and the volume of the de-
sign space in which the model is built. RSs enable highly non-linear model be-
haviour to be modelled, without complex mathematical operations on the system
matrices.

To minimise the computational effort required to prepare the data for the
generation of RS, the design of experiment (DoE) should be used [53]. The DoE
and the applied RS type strongly depend on the behaviour of the expected
output parameters [54]. If the output parameter behaviour can be characterised
as monotonic and close to linear, Central Composite Design (CCD) methods
may be applied. The CCD methods are a five-level fractional factorial design,
which is suitable for generating quadratic response models. The main idea is
to distribute the samples in the centres as well as in the extreme and diagonal
values of the input parameters design space, which can be typically represented
by [−γ,−1, 0,+1,+γ] values. The [−1, 1] values are related to the limits of the

a) b)

Fig. 2. Examples of CCD for two input parameters: a) CCC, b) CCI.
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normalised input parameter range, while the [−γ,+γ] values depend on the type
of the CCD design, as presented in Fig. 2 for circumscribed (CCC) and inscribed
(CCI) variants of CCD.

In cases where the behaviour of the output parameters is highly non-linear
and multi-modal, DoE based on a regular discretisation of the design space, e.g.
Optimal Space Filling, is recommended [55].

In the present paper, two different types of RS have been used, namely the
2nd order polynomial method and Artificial Neural Networks.

4.1. Second order polynomial method

The 2nd order polynomial method utilises an extended quadratic form to
represent the relationship between input and output parameters. This method
allows the response to be modelled for unimodal or monotonic functions and is
thus ideally suited for solving optimisation problems, due to the generation of
smooth functions with a single extremum. The quadratic model for a function y
of n variables is of the form [56]:

(4.1) y = β0 +
n∑
i=1

βixi+
n∑
i=1

n∑
j=i

βijxixj ,

where B = [β0 β1 β2 . . . βn β11 . . . β1n β22 . . . β2n . . . βnn]T denotes a vector of
the polynomial coefficients while x is a vector of input parameters.

After selecting the M design points using the DoE (M ≥ size(B), where
size(B) denotes a number of elements in B), an RS metamodel is constructed
using the least squares method. The unknown polynomial coefficients β are cal-
culated taking into account the sum of squares error SSE between the exact
results of the analysis yi and the polynomial approximation y′i:

(4.2) SSE =

M∑
i=1

(yi − y′i)2 =

M∑
i=1

ε2
i ,

where εi = yi − y′i is called the residual.
The residuals can be represented as follows:

(4.3) ε = y −XB,

where X is the samples input values matrix, e.g. in the following form (the
coefficients are obtained in an order corresponding to inserted input parameters
data):
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(4.4) X =
1 x11 x21 xn1 x11x21 x11x31 x(n−1)1xn1 x2

11 x2
21 x2

n1

1 x12 x22 · · · xn2 x12x22 x12x32 · · · x(n−1)2xn2 x2
12 x2

22 · · · x2
n2

1 x13 x23 xn3 x13x23 x13x33 x(n−1)3xn3 x2
13 x2

23 x2
n3

...
1 x1m x2m xnm x1mx2m x1mx3m x(n−1)mxnm x2

1m x2
2m x2

nm

,

and xnm denotes an n-th input parameter value for the m-th sample of the SSE.
The SSE then takes the form:

(4.5) SSE = εTε = (y −XB)T(y −XB).

As a result of differentiating Eq. (4.5) and equating it to zero, the vector of
polynomial coefficients B can be calculated as:

(4.6) B = (XTX)−1XTy.

4.2. Artificial Neural Networks as response surfaces

One of the possible applications of artificial neural networks (ANNs) is the
creation of response surfaces. ANNs are inspired by the functioning of nerve cells
(neurons) present in the human brain and nervous system [57]. The artificial
neuron consists of multiple inputs with the corresponding weighting coefficient
and a single output. A feed-forward ANN consists of many neurons arranged
in layers: input, output, and (optionally) one or more hidden layers [58]. The
output signal for an i-th neuron of the ANN is calculated as:

(4.7) yi = ω
( N∑
j=0

wijxj

)
= ω

( N∑
j=1

wijxj +B
)
,

where yi is an output value the i-th neuron, ω denotes an activation function,
wij is the weighting coefficient for j-th input value, xj states a j-th input value
of the i-th neuron, B = wi0x0 is the neuron bias.

The activation function is related to the type of problem to be solved. Within
the framework of this paper, a sigmoid activation function is adopted:

(4.8) ω(x) =
1

1 + e−ψx
,

where ψ is a coefficient related to the slope of the function.
The use of ANN as RS allows the modelling of complex data relationships

involving multimodal, highly non-linear, and discontinuous functions. To prepare
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the ANN for the description of parameter relationships, network learning has
to be carried out. The aim of learning is to modify the weighting factors in
such a way as to obtain the required ANN response for the given input values.
In the present paper, the Levenberg–Marquardt algorithm implemented in the
MATLAB software is used [59].

4.3. Response surface quality metrics

To verify the quality of the created RS, quality metrics should be used to
determine the precision of the values of the output parameters mapped [60]. The
metrics applied in the paper are:
• The coefficient of determination R2:

(4.9) R2 = 1−
∑N

i=1(yi − y′i)2∑N
i=1(yi − ȳ)2

,

where ȳ denotes the mean value of the output samples vector, N is a num-
ber of samples. The R2 values belong to the range from 0 to 1; R2 = 1
represents the perfect mapping of the input samples values.
• The standard error of the estimate σest:

(4.10) σest =

√∑N
i=1(yi − y′i)2

N
=
√
MSE,

where MSE denotes the mean squared error. The σest = 0 indicates a per-
fect match between the input samples and output values of RS.
• The predicted residual error sum of squares PRESS:

(4.11) PRESS =

N∑
i=1

(yveri − y′i)2,

where yver is a vector of verification samples.

5. Granular Computational Homogenisation

The aim of the homogenisation is to obtain possible ranges of equivalent
macroscopic linear material properties that depend on assumed uncertainties.
In this paper, the Granular Computational Homogenisation (GCH) concept is
proposed to solve uncertain homogenisation problems. GCH is based on the
representation of the microstructure of the material, the response surfaces of
different forms, the interval numbers, and the directed interval arithmetic [61].
Fuzzy numbers decomposed into α-cuts allow for the application of more detailed
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input data information than only input ranges. Such an approach leads to a safer
design of components made of inhomogeneous materials than in the case of
typical calculations without assumed uncertainties. The general concept of GCH
is presented in Fig. 3. The commercial finite element method software (ANSYS)
is used to solve boundary value problems on the micro scale.

Fig. 3. Concept of Granular Computational Homogenisation.

The first step in the granular homogenisation scheme (Fig. 4) is to prepare
a geometrical model of the structure (RVE) based on the microstructure of
the material. The model is then transferred to the ANSYS software. Based on the
geometry and assumed material properties, including constitutive relationships,
non-linearities, and the type of uncertainty, a numerical model of the microstruc-
ture is created. Information on the uncertainty of the data allows the selection



Granular computational homogenisation. . . 285

Fig. 4. Granular Computational Homogenisation scheme.

of the uncertainty modelling method (interval/fuzzy approach). The number of
input parameters influences the number of necessary sample calculations in the
DoE phase.

In the next step, the RS is generated on the input/output data. The RS
is constructed from RVEs calculated using classical numerical homogenisation.
Once the RS has been generated, the metamodel is represented as a set of al-
gebraic expressions that map the input parameters to the output parameters.
The equations of the metamodel are rewritten by introducing the directed inter-
val arithmetic, which results in the interval RS. The interval calculations result
in the values of the interval output parameters, representing the stiffness ma-
trix coefficients with assumed uncertainty type (interval numbers or α-cuts of
the fuzzy numbers). The uncertain stiffness matrix coefficients for linear mate-
rials and stress/strain curves for non-linear materials are calculated as output
parameters.
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6. Numerical results

In the present section, the application of the GCH to numerical homogeni-
sation of inhomogeneous materials with uncertainties is presented. All computa-
tions were performed usinga notebook workstation with an Intel Core i7-8750H
processor (6 cores with 2.2GHz clock speed) and 32GB of RAM.

6.1. Fibre-reinforced linear material

A fibre-reinforced composite made of an epoxy resin matrix with a uniform
and unidirectional distribution of carbon fibres is considered. The properties of
the homogeneous components of the composite are assumed to be experimentally
determined, and some of them are treated as uncertain. To obtain possible ranges
of equivalent, macroscopic material properties, the computational homogenisa-
tion based on material microstructure representation, 2nd order polynomial RS,
and fuzzy representation of uncertainties are employed.

Uncertain parameters are represented as triangular fuzzy numbers repre-
sented by three values each (a−, a0, a

+), where the value of a0 can differ from
the mean value of the left and right ends of the fuzzy number (a−, a+). Such
an approach allows the asymmetry of the fuzzy number to be modelled. Each
fuzzy number is represented by twelve α-cuts. The a0 values have been taken
from [62].

The properties of the isotropic matrix material are as follows:
– the uncertain matrix Young’s modulus: Ẽm = (4.5, 4.8, 5.1)GPa;
– the certain matrix Poisson’s ratio: νm = 0.3.
The properties of the transversally isotropic fibre material are the following:
– uncertain Young’s modulus in the fibre longitudinal x1 direction: Ẽf1 =

(245, 250, 265)GPa;
– uncertain Young’s modulus in the fibre transverse x2 direction Ẽf2 =

(21.5, 22.4, 23.3)GPa;
– uncertain Kirchhoff’s modulus in the x1x2 plane

G̃f12 = (20.7, 22.1, 22.9) GPa;

– certain Poisson’s ratios νf12 = 0.3 and νf23 = 0.35.
It is assumed that the volume fraction of reinforcement is also uncertain: f̃ =
(0.37, 0.4, 0.42).

The microstructure of the material is represented by an RVE of dimensions
30 × 30 × 30µm containing 9 uniformly distributed parallel fibres. The range
of fibre radii, resulting from the assumed volume fraction, is 3.432 ÷ 3.657µm
(Fig. 5a) [63]. The periodic boundary conditions are imposed on the RVE. The
RVE is discretised into 29 484 high-quality hexahedral elements with quadratic
shape functions (Hex20), resulting in 373 593 DoFs (Fig. 5b).
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a) b)

Fig. 5. The RVE model of the fibre-reinforced composite material:
a) unit cell geometry, b) FEM mesh.

The relative difference between the exact and discretised volume of rein-
forcement depends on the volume fraction, while the maximum value obtained
is equal to 6.515×10−4%. As the volume difference associated with the change in
volume fraction is 4 orders of magnitude greater than the error of the geometric
approximation, the second one can be assumed to be negligible.

The assumption of a uniform fibre distribution results in an orthotropic ma-
terial with two equivalent perpendicular directions (x2 and x3). Consequently,
the number of independent stiffness coefficients is equal to six: C11, C12 = C13,
C22 = C33, C23, C44, C55 = C66 (see Eq. (2.7)). DoE in the form of the CCF
variant of the Central Composite Design method was performed to create RS
in terms of a 2nd order polynomial, resulting in 43 sets of necessary input pa-
rameters. Then, the output parameters were calculated using periodic boundary
conditions. After calculating the design points, the 21 coefficients of the 2nd order
polynomial RS were calculated as:

(6.1) CRS(i, j) = β0(i, j) +
5∑

k=1

βk(i, j)pk +
∑
k,l

βkl(i, j)pkpl,

where pi is the i-th parameter value (p1 = Em, p2 = Ef1, p3 = Ef2, p4 = Gf12,
p5 = f) and the pair kl ∈ {11, 12, 13, 14, 15, 22, 23, 24, 25, 33, 34, 35, 44, 45, 55}.

The computed RS coefficients and quality metric values are collected in
Table 1. To calculate the PRESS metric values, additional 15 sets of random
combinations of parameters were used. The quality metrics indicate an excellent
match between the samples and RS.
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Table 1. RS coefficients and quality metrics for fibre-reinforced composite material.

Coefficient CRS(1, 1) CRS(1, 2) CRS(2, 2) CRS(2, 3) CRS(4, 4) CRS(5, 5)

β0(i, j) 3.792×10−1 6.595×10−1 1.952×100 3.441×10−1 5.326×10−1 1.614×100

β1(i, j) 1.512×100 7.760×10−1 1.605×100 7.453×10−1 3.718×10−1 2.762×10−1

β2(i, j) 4.373×10−5 7.339×10−5 1.239×10−4 1.224×10−4 8.258×10−6 2.130×10−5

β3(i, j) −1.899×10−2 −3.169×10−2 −9.493×10−2 −1.069×10−2 −1.224×10−2 2.310×10−4

β4(i, j) 1.987×10−5 3.755×10−5 6.670×10−5 7.194×10−5 5.546×10−5 −2.360×10−2

β5(i, j) −1.925×100 −3.348×100 −9.909×100 −1.748×100 −2.706×100 −8.208×100

β11(i, j) −2.077×10−2 −3.313×10−2 −7.662×10−2 −2.907×10−2 −1.485×10−2 −1.691×10−2

β12(i, j) −1.951×10−5 −3.113×10−5 −4.966×10−5 −4.964×10−5 −9.129×10−9 1.440×10−11

β13(i, j) 9.130×10−3 1.456×10−2 3.342×10−2 1.305×10−2 6.378×10−3 4.455×10−10

β14(i, j) −7.162×10−9 1.362×10−9 2.499×10−10 −3.219×10−10 2.179×10−10 7.481×10−3

β15(i, j) −1.014×100 5.185×10−2 2.938×10−1 1.040×10−1 2.697×10−1 9.716×10−1

β22(i, j) 2.474×10−7 3.934×10−7 6.264×10−7 6.232×10−7 −1.507×10−8 −4.176×10−8

β23(i, j) −1.609×10−6 −2.567×10−6 −4.115×10−6 −4.075×10−6 −6.055×10−9 −1.451×10−11

β24(i, j) 2.156×10−9 2.907×10−11 9.335×10−12 −2.482×10−11 −3.917×10−12 −8.530×10−12

β25(i, j) 9.997×10−1 −4.299×10−4 −7.010×10−4 −6.943×10−4 −1.225×10−6 6.812×10−11

β33(i, j) −9.695×10−4 −1.547×10−3 −3.559×10−3 −1.375×10−3 −6.835×10−4 −5.155×10−6

β34(i, j) 1.187×10−9 2.211×10−10 3.022×10−10 8.679×10−12 4.086×10−11 −2.396×10−11

β35(i, j) 1.245×10−1 2.021×10−1 5.383×10−1 1.181×10−1 7.863×10−2 −3.121×10−9

β44(i, j) −4.747×10−7 −8.617×10−7 −1.530×10−6 −1.650×10−6 −1.272×10−6 −8.223×10−4

β45(i, j) 1.427×10−6 2.946×10−8 5.611×10−9 −5.215×10−9 −3.108×10−9 1.142×10−1

β55(i, j) 2.425×100 4.220×100 1.250×101 2.195×100 3.416×100 1.037×101

R2 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

σest 1.835×10−4 2.993×10−4 7.164×10−4 2.597×10−4 1.438×10−4 2.715×10−4

PRESS 2.285×10−7 6.054×10−7 3.577×10−6 4.184×10−7 1.350×10−7 3.362×10−7

To reconstruct the output fuzzy numbers, calculations of the ranges of the
output parameters are performed for all α-cuts of each input parameter. Verifica-
tion of the ranges of determined stiffness coefficients is performed by comparing
the fuzzy output numbers for 0 and 1 of the α-cut with the semi-empirical re-
sults of the Halpin–Tsai theory (with a modified reinforcement factor for E2

calculations) [64]. The results of the comparison are summarised in Table 2.
The computation time for each design point for the four homogenisation

tests was approximately 60 s; the total computation time for all design points
was ∼45min. The total time to create RS and evaluate the interval numbers
was less than 1 s. Although the application of the presented methodology leads
to a longer computation time than a single analysis of all combinations for de-
terministic systems (due to the larger number of RVE samples required), the
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Table 2. Effective elastic constants of the fibre-reinforced material.

Material stiffness
coefficients [GPa]

Halpin–Tsai
solution

RS
+ Fuzzy numbers

Relative
difference [%]

C̃11

min (α = 0) 96.355 96.331 0.024

middle (α = 1) 106.006 105.980 0.024

max (α = 0) 117.620 117.593 0.023

C̃12

min (α = 0) 4.498 4.480 0.385

middle (α = 1) 4.915 4.896 0.378

max (α = 0) 5.299 5.280 0.366

C̃22

min (α = 0) 9.879 9.914 −0.354

middle (α = 1) 10.872 10.915 −0.397

max (α = 0) 11.772 11.825 −0.453

C̃23

min (α = 0) 4.224 4.198 0.622

middle (α = 1) 4.584 4.553 0.678

max (α = 0) 4.924 4.886 0.766

C̃44

min (α = 0) 2.633 2.486 5.617

middle (α = 1) 2.908 2.732 6.060

max (α = 0) 3.158 2.959 6.292

C̃55

min (α = 0) 3.241 3.252 −0.326

middle (α = 1) 3.660 3.678 −0.474

max (α = 0) 4.029 4.053 −0.592

generation of RS enables a fast metamodel application for optimisation and
identification problems. In this case, the time spent on a single RS generation
and its computation is much shorter than the total time related to the need to
analyse numerous deterministic RVEs for each set of optimisation parameters.

A careful analysis of the resulting fuzzy numbers presented in 6.2 shows that
they are no longer triangular due to the slight distortion, especially for values
of the membership function close to 1. This is due to the non-linear relationship
between input and output parameters.

The comparison of the result ranges with the semi-empirical model shows
very high agreement between the generated RS and the numerical model for al-
most all stiffness coefficients (the absolute relative difference is less than 0.68%).
The maximum absolute relative difference of 6.29% was obtained for the coeffi-
cient C̃44 and is related to the smaller values obtained by the numerical model
with periodic boundary conditions than with the Halpin–Tsai equations. This
discrepancy may be related to the simplifications adopted in analytical solutions
and has also been reported by other authors (e.g. [65]).
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Fig. 6. The fuzzy representation of effective elastic constants for the fibre-reinforced
composite material: a) C̃11, b) C̃12, c) C̃22, d) C̃23, e) C̃44, f) C̃55.

6.2. Particle-reinforced non-linear material

A composite material for surface coatings made of a non-linear nickel alloy
(NiCrBSi) matrix with uniformly distributed linear tungsten carbide inclusions
is considered. The bilinear isotropic properties [66] are assumed for the ma-
trix material. Such coatings with thicknesses up to 2mm are used due to their
wear properties [67]. As the thickness of the coating is usually relatively small
compared to the thickness of the object to be coated, the shear stiffness of the
coating can be neglected. As a consequence, the important effective properties
of the composite are related to the response to the normal strain [68].
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The properties of the homogeneous components of the composite are assumed
to be experimentally determined, and some of them are treated as uncertain. To
obtain possible ranges of equivalent, macroscopic non-linear material properties,
the computational homogenisation based on material microstructure represen-
tation, neural network RS and fuzzy representation of uncertainties are used.

The uncertain parameters represented as triangular fuzzy numbers are as
follows:

– matrix Young’s modulus Ẽm = (157.95, 162, 170.1)GPa;
– matrix yield stress R̃em = (318.5, 325, 331.5)MPa;
– reinforcement Young’s modulus Ẽr = (666.4, 680, 700.4)GPa;
– the reinforcement volume fraction f̃ = (0.304, 0.32, 0.332).
The a0 values of triangular fuzzy numbers have been taken from [69]. The

remaining, certain properties are:
– matrix Poisson’s ratio νm = 0.3;
– the matrix tangent modulus ETm = 3.25GPa;
– reinforcement Poisson’s ratio νr = 0.315.
The microstructure of the composite material is represented by a 2×2×2mm

periodic unit cell (RVE) containing a single centrally located spherical inclusion
(Fig. 7a). The Rmin and Rmax inclusion radii values are the result of the assumed
volume fraction range.

Since only the non-linear normal strain response is relevant for determin-
ing the behaviour of a relatively thin shell, a single non-linear normal strain
uniform test is sufficient. The unit cell geometry is discretised into 8,640 hexahe-
dral elements with quadratic shape functions (Hex20), resulting in 103,773 DoFs
(Fig. 7b). The influence of the discretisation on the geometrical uncertainty has

a) b)

Fig. 7. Unit cell model for particle-reinforced composite material:
a) geometry, b) finite element mesh.
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been checked. The maximum value of the relative difference between the theoret-
ical and discretised geometry volume of reinforcement is equal to 4.498× 10−4%
while the volume difference associated with a change in the volume fraction
is four orders of magnitude greater. As a result, the effect of discretisation on
geometric uncertainty can be neglected.

The Optimal Space Filling algorithm has been used as the DoE to create
50 design points that discretise the space of the input parameters. The stress
response for 10 increasing strain load values from the range ε11 = 〈0, 0.005〉
has been stored during the analysis. To obtain a metamodel capable of repre-
senting the non-linear stress response, strain load values have been used as an
additional input parameter. A 2-layer 5-5-2 ANN has been created using the
MATLAB neural network toolbox (Fig. 8). A sigmoidal activation function with
the ψ coefficient equal to 2 was applied for hidden layer neurons while a linear
activation function was adopted for both output layer neurons.

Fig. 8. The neural network architecture for particle-reinforced non-linear material.

70% of the set of calculated parameters were used to obtain the neuron
coefficients, while the remaining 30% were used for the ANN testing. The train-
ing algorithm converged after 509 iterations, obtaining a mean squared error of
MSE = 4.191MPa2, which is relatively small compared to the calculated values
of the stiffness matrix coefficients. The coefficient of determination R2 = 0.999,
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thus the neural network describes the non-linear behaviour of the material with
sufficient accuracy.

The computation time for each design point for homogenisation tests was ap-
proximately 15min; the total computation time for all design points was ∼12.5 h.
The creation and training time of the ANN was approximately 30 s, while the
evaluation time of the interval numbers was less than 1 s.

To analyse the effects of uncertainties, the trained neural network was trans-
formed using Eq. (4.7) into algebraic expressions that describe the values of the
output parameters. These equations were modified by introducing interval arith-
metic. To apply fuzzy calculations, fuzzy numbers were introduced for the first
four input parameters using their α-cuts, obtaining a set of interval equations for
all α-cut levels analysed. The strain input parameter was used as an additional
variable for the calculation of fuzzy numbers. The input fuzzy numbers were
discretised into 15 α-cuts each to reconstruct the output fuzzy number with an
unknown shape of the membership function. The results of the calculations in
the form of fuzzy macroscopic stresses σij for strain values ε11 = 0.0025 and
ε11 = 0.005 are shown in Fig. 9.

Fig. 9. Fuzzy σij macroscopic stress representation for specified ε11 values for particle
reinforced material: a) σ11 for ε11 = 0.0025, b) σ22 for ε11 = 0.0025, c) σ11 for ε11 = 0.005,

d) σ22 for ε11 = 0.005.
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A two-dimensional projection of fuzzy σij–ε11 relationship is shown in Fig. 10.
The membership functions in red correspond to the σij coefficients for ε11 =
0.0025 and ε11 = 0.005.

To verify the RVE numerical model and the results of the non-linear cal-
culations, ranges of effective elastic properties were calculated using the Cohen
theory [70] by calculating the sets of input parameters related to the extreme
values of the ranges of the parameters. The results in the form of stress-strain
relationship are presented in Fig. 10 with dotted lines. The comparison shows
good agreement with the first steps of the analysis of the non-linear model. The
calculated stress-strain relations are non-linear functions. The nonlinearity is
caused by the plastic yield of the matrix, in which the von Mises stresses exceed
the yield stress.

Fig. 10. Two-dimensional projection of fuzzy σij–ε11 relationship for particle-reinforced
material: a) for σ11 and b) for σ22.
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The two-dimensional projection of the fuzzy relationship σij–ε11 shows the
non-linear behaviour of the RVE model during longitudinal strain loading. As the
material matrix is described by the bilinear hardening rule, the tangent stiff-
ness C11 decreases with increasing load, while the tangent stiffness C12 increases.
It can also be seen in Fig. 10 that the output parameters are asymmetric, which
is due to the asymmetry of the input parameters. Furthermore, the width of the
fuzzy number described by α-cut for α = 0 increases with strain load, indicating
that the uncertainty of the material behaviour also increases with higher strain
values.

7. Conclusions

This paper presents the granular computational homogenisation, which is
a novel approach to the computational homogenisation of heterogeneous materi-
als with uncertain parameters. Two types of information granularities in the form
of interval numbers and fuzzy numbers are used. Converting fuzzy numbers to
sets of α-cuts allows the application of interval arithmetic in both cases. Linear
and non-linear material behaviours are considered. The model order reduction
in the form of response surfaces (2nd order polynomials and Artificial Neural
Networks) have been proposed to speed up computation, which is particularly
important for a non-linear material behaviour where the incremental analysis is
performed.

Numerical examples show the efficiency and high accuracy of the proposed
approach. The most time-consuming operation is the calculation of DoE sam-
ples, while the amount of time required for the other operations is considerably
lower. The created RS can be reused to solve other granulometric homogenisa-
tion problems, assuming the same microstructure of the material. The use of
interval arithmetic eliminates the need to calculate different samples to find the
minimum and maximum values of the stiffness coefficients. The accuracy of the
proposed method is confirmed by comparing it with traditional computational
homogenisation and analytical methods.

The presented approach uses the directed interval arithmetic, which min-
imises the effect of interval widening. This feature may be advantageous in future
applications, e.g. identification of imprecise microstructure parameters based on
measured or desired properties of the structure on the macro scale. The applica-
tion of conventional interval arithmetic would cause unwanted interval widening
in such cases. Another approach to efficiently solve such problems may be to
include the sensitivity analysis for parameter intervals [71].

The proposed approach can be used successfully to solve actual scientific
and industrial problems with uncertainties. The GCH can also be embedded in
commercial software, making the method applicable to a wide range of users.



296 W. Beluch, M. Hatłas, J. Ptaszny

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgements

The scientific research was funded from the statutory subsidy of the Faculty
of Mechanical Engineering, Silesian University of Technology, Poland.

References

1. S.W. Tsai, H.T. Hahn, Introduction to Composite Materials, Technomic Publishing
Company, Lancaster, 1980.

2. S.G. Advani, E.M. Sozer, Process Modeling in Composites Manufacturing, Marcel
Dekker, New York, 2003.

3. J. Ptaszny, P. Fedeliński, G. Dziatkiewicz, Boundary element method modelling of
nanocomposites, International Journal for Multiscale Computational Engineering, 12, 1,
33–43, 2014.

4. J. Ptaszny, M. Hatłas, Evaluation of the FMBEM efficiency in the analysis of porous
structures, Engineering Computations, 35, 2, 843–866, 2018.

5. J. Ptaszny, A fast multipole BEM with higher-order elements for 3-D composite materi-
als, Computers & Mathematics with Applications, 82, 15, 148–160, 2021.

6. T.S. Mesogitis, A.A. Skordos, A.C. Long, Uncertainty in the manufacturing of fi-
brous thermosetting composites: a review, Composites Part A: Applied Science and Man-
ufacturing, 57, 67–75, 2014.

7. M. Kamiński, Homogenization of particulate and fibrous composites with some non-
Gaussian material uncertainties, Composite Structures, 210, 778–786, 2019.

8. M.A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D.W. Apley, C. Brinson, W. Chen,
W.K. Liu, A framework for data-driven analysis of materials under uncertainty: coun-
tering the curse of dimensionality, Computer Methods in Applied Mechanics and Engi-
neering, 320, 633–667, 2017.

9. R. Bostanabad, B. Liang, J. Gao, W.K. Liu, J. Cao, D. Zeng, X. Su, H. Xu,
Y. Li, W. Chen, Uncertainty quantification in multiscale simulation of woven fiber com-
posites, Computer Methods in Applied Mechanics and Engineering, 38, 506–532, 2018.

10. B. Möller, M. Beer, Fuzzy Randomness: Uncertainty in Civil Engineering and Com-
putational Mechanics, Springer, Berlin, Heidelberg, 2004.

11. M. Kamiński, M. Kleiber, Perturbation based stochastic finite element method for ho-
mogenization of the two-phase elastic composites, Computers and Structures, 78, 811–826,
2000.

12. W. Beluch, T. Burczyński, Two-scale identification of composites’ material constants
by means of computational intelligence methods, Archives of Civil and Mechanical Engi-
neering, 14, 636–646, 2014.



Granular computational homogenisation. . . 297

13. S. Naskar, T. Mukhopadhyay, S. Sriramula, Spatially varying fuzzy multi-scale un-
certainty propagation in unidirectional fibre reinforced composites, Composite Structures,
209, 940–967, 2019.

14. W. Beluch, M. Hatłas, Numerical homogenization of inhomogeneous media with im-
precise parameters, Computer Methods in Mechanics, AIP Conference Proceedings, 1922,
1–7, 2017.

15. A.I. Khuri, J.A. Cornell, Response Surfaces: Designs and Analyses, 2nd ed., CRC
Press, Boca Raton, 1996.

16. M.S. Kothari, K.G. Vegad, K.A. Shah, A. Aly Hassan, An artificial neural network
combined with response surface methodology approach for modelling and optimization of
the electro-coagulation for cationic dye, Heliyon, 8, 1, e08749, 2022.

17. E.R. Hansen, A generalized interval arithmetic, [in:] K. Nickel [ed.], Interval Mathe-
matics, Lecture Notes in Computer Science, 29, 7–18, 1975.

18. B. Sendov, Some Topics of Segment Analysis, Interval Mathematics, K. Nickiel [ed.],
Academic Press, pp. 203–222, New York, 1980.

19. S.M. Markov, On directed interval arithmetic and its applications, Journal of Universal
Computer Science, 1, 514–526, 1995.

20. T.-W. Hou, Microstructural Design of Fiber Composites, Cambridge University Press,
Cambridge, 1992.

21. J. Ptaszny, P. Fedeliński, Numerical homogenization of polymer/clay nanocomposites
by the boundary element method, Archives of Mechanics, 63, 517–532, 2011.

22. J. Ptaszny, Accuracy of the fast multipole boundary element method with quadratic ele-
ments in the analysis of 3D porous structures, Computational Mechanics, 56, 3, 477–490,
2015.

23. T. Czyż, G. Dziatkiewicz, P. Fedeliński, R. Górski, J. Ptaszny, Advanced Com-
puter Modelling in Micromechanics, Silesian University of Technology Press, Gliwice, 2013.

24. M. Hatłas, W. Beluch, Multiscale global identification of porous structures, Computer
Methods in Mechanics, AIP Conference Proceedings, 1922, 1–7, 2017.

25. W. Beluch, A. Długosz, Multiobjective and multiscale optimization of composite ma-
terials by means of evolutionary computations, Journal of Theoretical and Applied Me-
chanics, 52, 2, 397–409, 2016.

26. D. Gross, T. Seelig, Fracture Mechanics, with an Introduction to Micromechanics,
Springer, Berlin, Heidelberg, 2006.

27. T. Lewiński, J. Telega, Plates, laminates and Shells: Asymptotic Analysis and Homog-
enization, World Scientific, 2000.

28. A. Belkhabbaz, R. Brenner, N. Rupin, B. Brigitte, J. Fonseca, Prediction of
the overall behavior of a 3D microstructure of austenitic steel by using FFT numerical
scheme, Procedia Engineering, 10, 1883–1888, 2011.

29. O. Pierard, C. Friebel, I. Doghri, Mean-field homogenization of multi-phase thermo-
elastic composites: a general framework and its validation, Composites Science and Tech-
nology, 64, 1587–1603, 2004.



298 W. Beluch, M. Hatłas, J. Ptaszny

30. T. Zohdi, P. Wriggers, An Introduction to Computational Micromechanics, Springer,
Berlin, Heidelberg, 2005.

31. M. Geers, V. Kouznetsova, K. Matous, J. Yvonnet, Homogenization methods
and multiscale modeling: Nonlinear problems, Encyclopedia of Computational Mechanics,
2nd ed., pp. 1–34, 2017.

32. R. Hill, Elastic properties of reinforced solids: some theoretical principles, Journal of the
Mechanics and Physics of Solids, 11, 357–372, 1963.

33. M.G.D. Geers, V. Kouznetsova, T. Massart, I. Özdemir, E.W.C. Coenen,
W.A.M. Brekelmans, R.H.J. Peerlings, Computational homogenization of structures
and materials, Proceedings of the 9th Neuvième Colloque National en Calcul des Struc-
tures, Giens, France, pp. 17–28, 2009.

34. L. Bos, P. Gibson, M. Kotchetov, M.A. Slawinski, Classes of anisotropic media:
a tutorial, Studia Geophisica et Geodaetica, 48, 265–287, 2004.

35. S. Gatea, T. Jwad, F. Chen, H. Ou, Micromechanical modeling of the deformation
and damage behavior of al6092/sic particle metal matrix composites, Journal of Materials
Engineering and Performance, 2023, doi: 10.1007/s11665-023-07907-4.

36. L.A. Zadeh, Fuzzy sets and information granularity, [in:] N. Gupta, R. Ragade, R, Yager
[eds.], Advances in Fuzzy Set Theory and Applications, pp. 3–18, Amsterdam, North Hol-
land, 1979.

37. A.A. Ramli, J. Watada, W. Pedrycz, Information granules problem: an efficient solu-
tion of real-time fuzzy regression analysis, [in:] W. Pedrycz, S.M. Chen [eds.], Information
Granularity, Big Data, and Computational Intelligence. Studies in Big Data, 8, Springer,
Cham, 2015.

38. A. Bargiela, W. Pedrycz, Toward a theory of granular computing for human-centred
information processing, IEEE Transactions on Fuzzy Systems, 16, 2, 320–330, 2008.

39. J.T. Yao, A ten-year review of granular computing, Proceeding of 2007 IEEE Interna-
tional Conference on Granular Computing, Silicon Valley, USA, pp. 734–739, 2007.

40. B.M. Ayyub, Uncertainty Modeling and Analysis in Civil Engineering, CRC Press, Boca
Raton, 1997.

41. L.A. Zadeh, Fuzzy sets, Information and Control, 8, 338–353, 1965.

42. D. Dubois, H. Prade, Operations on fuzzy numbers, International Journal of Systems
Science, 9, 613–626, 1978.

43. M. Hanss, Applied Fuzzy Arithmetic, Springer, Berlin, 2005.

44. M.L. Guerra, L. Stefanini, Approximate fuzzy arithmetic operations using monotonic
interpolations, Fuzzy Set and Systems, 150, 5–33, 2005.

45. P.R. Halmos, Naive Set Theory, Springer, New York, 1974.

46. L. Jaulin, M. Kieffer, O. Didrit, E. Water, Applied Interval Analysis, Springer,
London, 2001.

47. B. Hayes, A lucid interval, American Scientist, 91, 6, 484–488, 2003.

48. S.M. Markov, On direct interval arithmetic and its applications, Journal of Universal
Computer Science, 1, 7, 514–526, 1995.

https://doi.org/10.1007/s11665-023-07907-4


Granular computational homogenisation. . . 299

49. E.D. Popova, Multiplication distributivity of proper and improper intervals, Reliable
Computing, 7, 129–140, 2001.

50. S.M. Markov, Extended interval arithmetic involving infinite intervals, Mathematica
Baltanica, 6, 269–304, 1992.

51. A. Piasecka-Belkhayat, Interval boundary element method for imprecisely defined un-
steady heat transfer problems [in Polish], Publishing House of Silesian University of Tech-
nology, Monographs, 321, Gliwice, 2011.

52. P.R. Nelson, M. Coffin, K.A.F. Copeland, Response surface methods, P.R. Nelson,
M. Coffin, A.F.K. Copeland [eds.], Introductory Statistics for Engineering Experimenta-
tion, pp. 395–423, Academic Press, Cambridge, 2003.

53. D. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, New York,
2012.

54. L.W. Friedman, The Simulation Metamodeling, Springer, Boston, 1996.

55. L. Prozato, W. Müller, Design of computer experiments: space filling and beyond,
Statistics and Computing, 22, 681–701, 2012.

56. J.P.C. Kleijnen, Response Surface Methodology, [in:] M. Fu [ed.], Handbook of Simula-
tion Optimization. International Series in Operations Research and Management Science,
216, Springer, New York, 2015.

57. L. Rutkowski, Computational Intelligence: Methods and Techniques, Springer, Berlin,
2008.

58. J. Hertz, R.G. Palmer, A.S. Krogh, Introduction to the Theory of Neural Computa-
tion, Perseus Books, New York, 1990.

59. M.T. Hagan, M. Menhaj, Training feed-forwards networks with Marquardt algorithm,
IEEE Transactions on Neural Networks, 5, 989–993, 1994.

60. Ansys Inc.: Theory Reference, Release 19.0 documentation for ANSYS, 2018.

61. M. Hatłas, Modelling and Optimisation of Inhomogeneous Materials Using Granular
Computations, PhD Thesis, Gliwice, 2021.

62. J. German, Basics of Fibre-reinforced Composite Mechanics, Cracow University of Tech-
nology, Cracow, 1996 [in Polish].

63. G.G. Tibbetts, C.P. Beetz, Mechanical properties of vapour-grown carbon fibres, Jour-
nal of Physics D: Applied Physics, 20, 3, 292–297, 1987.

64. E. Giner, A. Vercher, M. Marco, Estimation of the reinforcement factor ξ for cal-
culating E_2 with the Halpin-Tsai equations using the finite element method, Composite
Structures, 124, 402–408, 2015.

65. Y. Fan, H. Wang, A simple Python code for computing effective properties of 2D and
3D representative volume element under periodic boundary conditions, Project: Reanalysis
Assisted Global Optimization, Cornell University, 2017.

66. B. Chatterjee, P. Sahoo, Effect of strain hardening on elastic-plastic contact of a de-
formable sphere against a rigid flat under full stick contact condition, Advances in Tribol-
ogy, 2012, Article ID 472794, 8 pages, 2012.



300 W. Beluch, M. Hatłas, J. Ptaszny

67. D. Deschuyteneer, F. Petit, M. Gonon, F. Cambier, Influence of large particle
size – up to 1.2mm – and morphology on wear resistance in NiCrBSi/WC laser cladded
composite coatings, Surface & Coatings Technology, 311, 365–373, 2017.

68. L.I. Tushinsky, I. Kovensky, A. Plokhov, V. Sindeyev, P. Reshedko, Coated
metal. Structure and properties of metal-coating compositions, Engineering Materials,
Springer, New York, 2002.

69. Z. Hu, R. Karki, Prediction of mechanical properties of three-dimensional fabric com-
posites reinforced by transversely isotropic carbon fibers, Journal of Composite Materials,
49, 1513–1524, 2015.

70. I. Cohen, Simple algebraic approximations for the effective elastic moduli of cubic arrays
of spheres, Journal of the Mechanics and Physics of Solids, 52, 2167–2183, 2004.

71. G. Shao, J. Su, Sensitivity and inverse analysis methods for parameter intervals, Journal
of Rock Mechanics and Geotechnical Engineering, 2, 3, 274–280, 2010.

Received November 28, 2022; revised version June 20, 2023.
Published online July 6, 2023.


	W. Beluch, M. Hatłas, J. Ptaszny, Granular computational homogenisation of composite structures with imprecise parameters\

