PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of photopolymerization parameters on the mechanical properties of polymer : ceramic composites applied in the conservative dentistry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the results of study of mechanical properties for four commercial polymer-ceramic composites applied in the conservative dentistry are presented, including one new silorane based composite and three standard composites based on methacrylate compounds. Influence of the type of light of diode and halogen polymerization lamps on the microhardness, flexural strength and elasticity were studied. Both exposed and unexposed specimens were taken into account. An exposure time was also differentiated (40 sec and 60 sec). Basic statistics of the analysed material parameters were determined. A post hoc test (Newman-Keuls) was performed in order to evaluate differences between microhardness of the studied materials, as well as Kruskal-Wallis test to evaluate differences in flexural strength and elasticity modulus of the material. It has been indicated that there is an impact of the type of lamp on the microhardness and flexural strength of composites with methacrylate matrix and lack of such impact in case of composites containing siloranes. Additionally, it has been found that an increase of photopolymerization time has a significantly different impact on the mechanical properties depending on the type of irradiated material.
Rocznik
Strony
29--35
Opis fizyczny
Bibliogr. 29 poz., tab.
Twórcy
autor
  • Main School of Fire Service, Fire Safety Engineering Faculty, Department of Firefighting Technique, Applied Mechanics Section, 52 Słowackiego Str., 01-629 Warsaw, Poland
  • Department of Conservative Dentistry Medical University of Lublin, 7 Karmelicka Str., 20-081 Lublin, Poland
autor
  • Lublin University of Technology, Department of Materials Science, 36 Nadbystrzycka Street, 20-618 Lublin
  • Department of Conservative Dentistry Medical University of Lublin, 7 Karmelicka Str., 20-081 Lublin, Poland
Bibliografia
  • [1] LI J., LI H., FOKA A.S.L., WATTS D.C., Multiple correlations of material parameters of light-cured dental composites, Dent. Mater., 2009, 25, 829–836.
  • [2] NIEWCZAS A., Laboratoryjne badania fizyko-mechanicznej degradacji kompozytowych wypełnień stomatologicznych oraz ocena ich trwałości, Wyd. Uniwersytetu Medycznego w Lublinie, Lublin 2012.
  • [3] LIEN W., VANDEWALLE K.S., Physical properties of a new silorane-based restorative system, Dent. Mater., 2010, 26, 337–344.
  • [4] MOSZNER N., SALZ U., New development of polymeric dental composites, Prog. Polym. Sci., 2001, 26, 535–536.
  • [5] MUSANJE L., FERRACANE J.L., Effects of resin formulation and nanofiller surface treatment on the properties of experimental hybryd resin composite, Biomater., 2004, 25, 4065–71.
  • [6] PIENIAK D., NIEWCZAS A.M., Phenomenological evaluation of fatigue cracking of dental restorations under conditions of cyclic mechanical loads, Acta of Bioengineering and Biomechanics, 2012, 14, 2, 9–17.
  • [7] PAWŁOWSKA E., LOBA K., BŁASIAK J., SZCZEPAŃSKA J., Properties and Risk of the Use of Bisphenol A−Glycidyl Methacrylate and Urethane Dimethacrylate – Basic Monomers of Dental Restorative Materials, Dent. Med. Probl., 2009, 46, 4, 477–485.
  • [8] PERIS A.R., MITSUI F.H.O., AMARAL C.M., AMBROSANO G.M.B., PIMENTA L.A.F., The effect of composite type of microhardness when using quarto-tungsten-halogen (QTH) of LED lights, Oper. Dent., 2005, 30(5), 649–654.
  • [9] ASMUSSEN E., PEUTZFELDT A., Influence of UEDMA, Bis-GMA and TEGDMA on selected mechanical properties of experimental resin composites, Dent. Mater., 1998, 14, 51–6.
  • [10] FERRACANE J.L., BERGE H.X., CONDON JR., In vitro aging of dental composites in water – effect of degree of conversion, filler volume, and filler/matrix coupling, J. of Biomed. Mater. Res., 1998, 42, 465–72.
  • [11] KELSEY W.P., LATTA M.A., SHADDY R.S., STANSILAV C.M., Physical properties of three packable resin-composite restorative materials, Oper. Dent., 2000, 25, 331–5.
  • [12] MANHART J., KUNZELMANN K.H., CHEN H.Y., HICKEL R., Mechanical properties of new composite restorative materials, J. of Biomed. Mater. Res., 2000, 53, 353–61.
  • [13] PALIN W.M., FLEMING G.J.P., BURKE F.J.T., MARQUIS P.M., RANDALL R.C., The reliability in flexural strength testing of a novel dental composite, J. of Dent., 2003, 31, 549–557.
  • [14] VERSLUIS A., TANTBIROJN D., DOUGLAS W.H., Do dental composites always shrink toward the light? J. of Dent. Res., 1998, 77, 1435–45.
  • [15] DALL'MAGRO E., SINHORETI M.A., CORRER A.B., CORRERSOBRINHO L., CONSANI S., PUPPIN-RONTANI R.M., Effect of different initial light intensity by the soft-start photoactivation on the bond strength and Knoop hardness of a dental composite, Braz. Dent. J., 2007, 18(2), 107–12.
  • [16] DUNN W.J., BUSH A.C., A comparison of polymerization by light-emitting diode and halogen-based light-curing units, J. Am. Dent. Assoc., 2002, 133(3), 335–41.
  • [17] LODHI T.A., Surface hardness of different shades and types of resin composite cred with a high Power LED light curing unit, University of Western Cape, 2006.
  • [18] RITTER J.E., Critique of test methods for lifetime predictions, Dent. Mater., 1995, 11, 147–151.
  • [19] SANTERRE J.P., SHAJI Z., LEUNG B.W., Relation of dental composite formulations to their degradation and release of hydrolyzed polymeric-resin-derived products, Crit. Rev. Oral Biol. Med., 2001, 12, 136–151.
  • [20] NIEWCZAS A., PIENIAK D., OGRODNIK P., Reliability analysis of strength of dental composites subjected to different photopolymerization procedures, Maitenace and Reliability – Eksploatacja i Niezawodność, 2012, 3, 249–255.
  • [21] HEINTZE S.D., ZAPPINI G., ROUSSON V., Wear often dental restorative materials in five wear simulators–Results of a round robin test, Dent. Mater., 2005, 21, 304–317.
  • [22] PEUTZFELD A., Resin composites in dentistry the monomer system, Eur. J. Oral Sci., 1997, 105, 97–116.
  • [23] HEINTZE S.D., ZELLWEGER G., ZAPPINI G., The relationship between physical parameters and wear of dental composites, Wear, 2007, 263, 1138–1146.
  • [24] ISO 4049 Dentistry – Polymer-based filling, restorative and luting materials 2000.
  • [25] PIENIAK D., NIEWCZAS A., KORDOS P., Influence of thermal fatigue and ageing on the microhardness of polymerceramic composites for biomedical applications, Maitenace and Reliability – Eksploatacja i Niezawodność, 2012, 2, 181–188.
  • [26] UHL A., MILLS R.W., JANDT K.D., Polymerization and lightinduced heat of dental composites cured with LED and halogen technology, Biomater., 2003, 24, 1809–1820.
  • [27] STAHL F., ASHWORTH S.H., JANDT K.D., MILLS R.W., Lightemitting diode (LED) polymerisation of dental composites: flexural properties and polymerisation potentia, Biomater, 2000, 21, 1379–85.
  • [28] UHL A., MILLS R.W., RZANNYC A.E., JANDT K.D., Time dependence of composite shrinkage using halogen and LED light curing, Dent. Mater., 2005, 21, 278–286.
  • [29] PALIN W.M., FLEMING G.J.P., MARQUIS P.M., The reliability of standardized flexure strength testing procedures for a light-activated resin-based composite, Dent. Mater., 2005, 21, 911–919.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb726720-778f-455f-9d8e-73cd72cdebf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.