PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing Spectral and Energy Efficiency of Massive MIMO Networks Using MVO and API Algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wireless communication, especially that relying on 5G technology, plays a crucial role in modern networks. The use of massive multiple-input, multiple-output (MIMO) systems is one of the key advancements in this area, as it improves energy efficiency (EE) and spectral efficiency (SE), making such a technique critical for future communication networks. This article focuses on optimizing EE and SE using a new metaheuristic multiverse optimization algorithm (MVO), and compares the results obtained with those achieved with the use of the Pachycondyla Apicalis algorithm (API) and other methods. Furthermore, the study explores the best values for factors such as coherence time, power amplifier efficiency, and hardware power in each user, with all of them playing a critical role in maximizing EE. The authors also examine the correlation between EE and SE in the downlink direction. The results show that the MVO approach achieves better performance in fewer iterations compared to API and other methods, demonstrating its potential for improving wireless communication systems.
Rocznik
Tom
Strony
81--90
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • SATIT Laboratory, University of Abbes Laghrour, Khenchela, Algeria
  • SATIT Laboratory, University of Abbes Laghrour, Khenchela, Algeria
  • LTPh Laboratory, University of Abbes Laghrour, Khenchela, Algeria
  • LTI Laboratory, University of Larbi Tebessi, Tebessa, Algeria
  • LAMIS Laboratory, University of Larbi Tebessi, Tebessa, Algeria
  • SATIT Laboratory, University of Abbes Laghrour, Khenchela, Algeria
Bibliografia
  • [1] O. Tervo, L.-N. Tran, and M. Juntti, “Optimal Energy-efficient Transmit Beamforming for Multi-user MISO Downlink”, IEEE Transactions on Signal Processing, vol. 63, no. 20, pp. 5574–5588, 2015 (https://doi.org/10.1109/TSP.2015.2453134).
  • [2] Q.-D. Vu, L.-N. Tran, R. Farrell, and E.-K. Hong, “Energy-efficient Zero-forcing Precoding Design for Small-cell Networks”, IEEE Transactions on Communications, vol. 64, no. 2, pp. 790–804, 2016 (https://doi.org/10.1109/TCOMM.2015.2502941).
  • [3] M. Mohammadi, Z. Mobini, H.Q. Ngo, and M. Matthaiou, “Ten Years of Research Advances in Full-Duplex Massive MIMO”, IEEE Transactions on Communications, early access, 2024 (https://doi.org/10.1109/TCOMM.2024.3464414).
  • [4] L. You et al., “Spectral Efficiency and Energy Efficiency Tradeoff in Massive MIMO Downlink Transmission with Statistical CSIT”, Hiba Ines Bitat, Fouzia Maamri, Fatima Khelfaoui, Hanane Djellab, Yacine Belhocine, and Yacine Messai IEEE Transactions on Signal Processing, vol. 68, pp. 2645–2659, 2020 (https://doi.org/10.1109/TSP.2020.2986391).
  • [5] A. Salh et al., “Trade-off Energy and Spectral Efficiency in 5G Massive MIMO System”, arXiv, 2021 (https://doi.org/10.48550/arXiv.2105.10722).
  • [6] H. Ju et al., “Transformer-assisted Parametric CSI Feedback for mmWave Massive MIMO Systems”, IEEE Transactions on Wireless Communications, vol. 23, no. 12, pp. 18774–18787, 2024 (https: //doi.org/10.1109/TWC.2024.3476474).
  • [7] A. Zappone et al., “Energy-efficient Power Control: A Look at 5G Wireless Technologies”, IEEE Transactions on Signal Processing, vol. 64, no. 7, pp. 1668–1683, 2016 (https://doi.org/10.1109/TSP.2015.2500200).
  • [8] M.A. Saeed and A.O.Nwajana, “AReviewof Beamforming Microstrip Patch Antenna Array for Future 5G/6G Networks”, Frontiers in Mechanical Engineering, vol. 9, 2024 (https://doi.org/10.3389/fmech.2023.1288171).
  • [9] Z. Behdad, Ö.T. Demir, K.W. Sung, and C. Cavdar, “Interplay Between Sensing and Communication in Cell-Free Massive MIMO with URLLC Users”, 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, UAE, 2024 (https://doi.org/10.1109/WCNC57260.2024.10571226).
  • [10] K.N.R.S.V. Prasad, E. Hossain, and V.K. Bhargava, “Energy Efficiency in Massive MIMO-based 5G Networks: Opportunities and Challenges”, IEEE Wireless Communications, vol. 24, no. 3, pp. 86–94, 2017 (https://doi.org/10.1109/MWC.2016.1500374WC).
  • [11] C. Jiang and L.J. Cimini, “Downlink Energy-efficient Multiuser Beamforming with Individual SINR Constraints”, MILCOM 2011 –Military Communications Conference, Baltimore, USA, 2011 (https://doi.org/10.1109/MILCOM.2011.6127719).
  • [12] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Designing Multi-user MIMO for Energy Efficiency: When is Massive MIMO the Answer?”, 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Türkiye, 2014 (https://doi.org/10.1109/WCNC.2014.6951974).
  • [13] D. Ha, K. Lee, and J. Kang, “Energy Efficiency Analysis with Circuit Power Consumption in Massive MIMO Systems”, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, UK, 2013 (https://doi.org/10.1109/PIMRC.2013.6666272).
  • [14] O. Saatlou, “Spectral Efficiency Maximization of a Massive Multiuser MIMO System via Appropriate Power Allocation”, Ph.D. thesis, Concordia University, 2019 (https://spectrum.library.concordia.ca/985700/).
  • [15] H. Huh, G. Caire, H.C. Papadopoulos, and S.A. Ramprashad, “Achieving ‘Massive MIMO’ Spectral Efficiency with a Not-so-large Number of Antennas”, IEEE Transactions on Wireless Communications, vol. 11, no. 9, pp. 3226–3239, 2012 (https://doi.org/10.1109/TWC.2012.070912.111383).
  • [16] J. Zhang, L. Dai, S. Sun, and Z. Wang, “On the Spectral Efficiency of Massive MIMO Systems with Low-resolution ADCs”, IEEE Communications Letters, vol. 20, no. 5, pp. 842–845, 2016 (https://doi.org/10.1109/LCOMM.2016.2535132).
  • [17] H.Q. Ngo et al., “On the Total Energy Efficiency of Cell-free Massive MIMO”, IEEE Transactions on Green Communications and Networking, vol. 2, no. 1, pp. 25–39, 2018 (https://doi.org/10.1109/TGCN.2017.2770215).
  • [18] N. Li, Y. Gao, and K. Xu, “On the Optimal Energy Efficiency and Spectral Efficiency Trade-off of CF Massive MIMO SWIPT System”, EURASIP J. on Wireless Communications and Networking, art. no. 167, 2021 (https://doi.org/10.1186/s13638-021-02035-w).
  • [19] E.G. Larsson, O. Edfors, F. Tufvesson, and T.L. Marzetta, “Massive MIMO for Next Generation Wireless Systems”, IEEE Communications Magazine, vol. 52, no. 2, pp. 186–195, 2014 (https: //doi.org/10.1109/MCOM.2014.6736761).
  • [20] N.H.M. Adnan, I. Md. Rafiqul, and A.H.M.Z. Alam, “Massive MIMO for Fifth Generation (5G): Opportunities and Challenges”, 2016 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 2016 (https://doi.org/10.1109/ICCCE.2016.23).
  • [21] S. Labed and N. Aounallah, “Efficient Iterative Detection Based on Conjugate Gradient and Successive Over-relaxation Methods for Uplink Massive MIMO Systems”, Journal of Telecommunications and Information Technology, no. 2, 2023 (https://doi.org/10.26636/jtit.2023.169023).
  • [22] R. Chataut and R. Akl, “Massive MIMO Systems for 5G and beyond Networks – Overview, Recent Trends, Challenges, and Future Research Direction”, Sensors, vol. 20, no. 10, art. no. 2753, 2020 (https://doi.org/10.3390/s20102753).
  • [23] M. Jiang and L. Hanzo, “Multiuser MIMO-OFDM for Next-generation Wireless Systems”, Proceedings of the IEEE, vol. 95, no. 7, pp. 1430–1469, 2007 (https://doi.org/10.1109/JPROC.2007.898869).
  • [24] Z. Zhang et al., “Intelligent Omni Surfaces Assisted Integrated Multitarget Sensing and Multi-user MIMO Communications”, IEEE Transactions on Communications, vol. 72, no. 8, pp. 4591–4606, 2024 (https://doi.org/10.1109/TCOMM.2024.3374351).
  • [25] E. Björnson, E.G. Larsson, and T.L. Marzetta, “Massive MIMO: Ten Myths and One Critical Question”, IEEE Communications Magazine, vol. 54, no. 2, pp. 114–123, 2016 (https://doi.org/10.1109/MCOM.2016.7402270).
  • [26] T. Van Chien and E. Björnson, “Massive MIMO Communications”, in: 5G Mobile Communications, Springer, pp. 77–116, 2017 (https://doi.org/10.1007/978-3-319-34208-5_4).
  • [27] F.A. Pereira de Figueiredo, “An Overview of Massive MIMO for 5G and 6G”, IEEE Latin America Transactions, vol. 20, no. 6, pp. 931–940, 2022 (https://doi.org/10.1109/TLA.2022.9757375).
  • [28] A. Ashraf et al., “Advancements and Challenges in Scalable Modular Antenna Arrays for 5G Massive MIMO Networks”, IEEE Access, vol. 12, pp. 57895–57916, 2024 (https://doi.org/10.1109/ACCESS.2024.3391945).
  • [29] A. Shaikh and M.J. Kaur, “Comprehensive Survey of Massive MIMO for 5G Communications”, 2019 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, UAE, 2019(https://doi.org/10.1109/ICASET.2019.8714426).
  • [30] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency”, Foundations and Trends in Signal Processing, vol. 11, no. 3–4, pp. 154–655, 2017 (https://doi.org/10.1561/2000000093).
  • [31] J. Tang, D.K.C. So, E. Alsusa, and K.A. Hamdi, “Resource Efficiency: A New Paradigm on Energy Efficiency and Spectral Efficiency Tradeoff”, IEEE Transactions on Wireless Communications, vol. 13, no. 8, pp. 4656–4669, 2014 (https://doi.org/10.1109/TWC.20 14.2316791).
  • [32] P. Blacher, E. Lecoutey, D. Fresneau, and E. Nowbahari, “Reproductive Hierarchies and Status Discrimination in Orphaned Colonies of Pachycondyla Apicalis Ants”, Animal Behaviour, vol. 79, pp. 99–105, 2010 (https://doi.org/10.1016/j.anbehav.2009.10.008).
  • [33] K.E. Purushothaman and V. Nagarajan, “Multiobjective Optimization Based on Self-organizing Particle Swarm Optimization Algorithm for Massive MIMO 5G Wireless Network”, International Journal of Communication Systems, vol. 34, art. no. 4725, 2021 (https://doi.org/10.1002/dac.4725).
  • [34] Y. Liu, B. Ai, and J. Zhang, “Downlink Spectral Efficiency of Massive MIMO Systems with Mutual Coupling”, Electronics, vol. 12, no. 6, art. no. 1364, 2023 (https://doi.org/10.3390/electronics12061364).
  • [35] J. Tang, D.K.C. So, E. Alsusa, and K.A. Hamdi, “Resource Efficiency: A New Paradigm on Energy Efficiency and Spectral Efficiency Tradeoff”, IEEE Transactions on Wireless Communications, vol. 13, no. 8, pp. 4656–4669, 2014 (https://doi.org/10.1109/TWC.2014.2316791).
  • [36] D.M. Eardley, “Death of White Holes in the Early Universe”, Physical Review Letters, vol. 33, art. no. 442, 1974 (https://doi.org/10.1103/PhysRevLett.33.442).
  • [37] P.J. Steinhardt and N. Turok, “A Cyclic Model of the Universe”, Science, vol. 296, no. 5572, pp. 1436–1439, 2002 (https://doi.org/10.1126/science.1070462).
  • [38] R.M. Wald, “The Thermodynamic s of Black Holes”, Living Reviews in Relativity, vol. 4, art. no. 6, 2001 (https://doi.org/10.12942 /lrr-2001-6).
  • [39] S. Mirjalili, S.M. Mirjalili, and A. Hatamlou, “Multi-verse Optimizer: A Nature-inspired Algorithm for Global Optimization”, Neural Computing and Applications, vol. 27, pp. 495–513, 2016 (https://doi.org/10.1007/s00521-015-1870-7).
  • [40] N. Monmarché, G. Venturini, and M. Slimane, “On how Pachycondyla Apicalis Ants Suggest a New Search Algorithm”, Future Generation Computer Systems, vol. 16, no. 8, pp. 937–946, 2000 (https://doi.org/10.1016/S0167-739X(00)00047-9).
  • [41] F. Maamri, S. Bououden, M. Chadli, and I. Boulkaibet, “The Pachycondyla Apicalis Metaheuristic Algorithm for Parameters Identification of Chaotic Electrical System”, International Journal of Parallel, Emergent and Distributed Systems, vol. 33, no. 5, pp. 490–502, 2018 (https://doi.org/10.1080/17445760.2017.1401622).
  • [42] S. Azzeddinne and M. Zoubir, “Pachycondyla APIcalis Ants (API) Algorithm for Multi-user Detection of SDMA-OFDM System”, International Journal of Circuits, Systems and Signal Processing, vol. 11, pp. 230–235, 2017 (https://www.naun.org/main/NAUN/circuitssystemssignal/2017/a602005-abv.pdf).
  • [43] H.I. Bitat et al., “Optimization of a MIMO Antenna using the API metaheuristic algorithm”, 2024 8th International Conference on Image and Signal Processing and their Applications (ISPA), Biskra, Algeria, 2024 (https://doi.org/10.1109/ISPA59904.2024.10536777).
  • [44] Y. Messai et al., “Use of Meta-heuristic Algorithm to Optimize Ericsson Propagation Model Application on LTE”, 2024 8th International Conference on Image and Signal Processing and their Applications (ISPA), Biskra, Algeria, 2024 (https://doi.org/10.1109/ISPA59904.2024.10536776).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb6fe0da-6148-4f29-a27a-0ae65ab6dd9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.