Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We introduce the (q, h)-blossom of bivariate polynomials, and we define the bivariate (q, h)-Bernstein polynomials and (q, h)-Bézier surfaces on rectangular domains using the tensor product. Usingthe (q, h)-blossom, we construct recursive evaluation algorithms for (q, h)-Bézier surfaces and we derive adual functional property, a Marsden identity, and a number of other properties for bivariate (q, h)-Bernsteinpolynomials and (q, h)-Bézier surfaces. We develop a subdivision algorithm for (q, h)-Bézier surfaces witha geometric rate of convergence. Recursive evaluation algorithms for quantum (q, h)-partial derivatives ofbivariate polynomials are also derived.
Wydawca
Czasopismo
Rocznik
Tom
Strony
451--466
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Texas Southern University, USA
autor
- University of Houston – Downtown
autor
- University of Houston – Downtown
Bibliografia
- [1] Goldman R., Simeonov P., Quantum Bernstein bases and quantum Bézier curves, J. Comput. Appl. Math., 2015, 288, 284-303
- [2] Goldman R., Simeonov P., Novel polynomial Bernstein bases and Bézier curves based on a general notion of polynomial blossoming, Numer. Algorithms, 2016, 72(3), 605-634.
- [3] Simeonov P., Zafiris V., Goldman R., h-Blossoming: A new approach to algorithms and identities for h-Bernstein bases and h-Bézier curves, Comput. Aided Geom. Design, 2011, 28(9), 549-565
- [4] Simeonov P., Zafiris V., Goldman R., q-Blossoming: A new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves, J. Approx. Theory, 2012, 164(1), 77-104
- [5] Jegdić I., Larson J., Simeonov P., Algorithms and identities for (q, h)-Bernstein polynomials and (q, h)-Bézier curves – a non-blossoming approach, Anal. Theory Appl., 2016, 32, 373-386
- [6] Simeonov P., Goldman R., Quantum B-splines, BIT, 2013, 53(1), 193-223
- [7] Goldman R., Simeonov P., Generalized quantum splines, Comput. Aided Geom. Design, 2016, 47, 29-54
- [8] Dişibüyük C., Goldman R., A unified approach to non-polynomial B-spline curves based on a novel variant of the polar form, Calcolo, 2016, 53(4), 751-781
- [9] Lewanowicz S., Woźny P., Generalized Bernstein polynomials, BIT, 2004, 44, 63-78
- [10] Oruc H., Phillips G. M., A generalization of the Bernstein polynomials, Proc. Edinb. Math. Soc., 1999, 42, 403-413
- [11] Oruc H., Phillips G. M., q-Bernstein polynomials and Bézier curves, J. Comput. Appl. Math., 2003, 151, 1-12
- [12] Phillips G., Bernstein polynomials based on the q-integers, Annals of Numerical Analysis, 1997, 4, 511-518
- [13] Phillips G., A survey of results on the q-Bernstein polynomials, IMA J. Numer. Anal., 2010, 30, 277-288
- [14] Stancu D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 1968, 13, 1173-1194
- [15] Stancu D., Generalized Bernstein approximating operators, Itinerant seminar on unctional equations, approximation and convexity, Cluj-Napoca, 1984, 185-192
- [16] Farin G., Curves and Surfaces for CAGD, 5th ed., Morgan Kaufman, 2001
- [17] Goldman R., Pólya’s urn model and computer aided geometric design, SIAM J. Alg. Disc. Meth., 1985, 6, 1-28
- [18] Goldman R., Pyramid Algorithms, A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling, The Morgan Kaufman Series in Computer Graphics and Geometric Modeling, Elsevier Science, 2003
- [19] Goldman R., Barry P., Recursive polynomial curve schemes and computer-aided geometric design, Constr. Approx., 1990, 6, 65-96
- [20] Goldman R., Barry P., Shape parameter deletion for Pólya curves, Numer. Alg., 1991, 1, 121-137
- [21] Ramshaw L., Bézier and B-spline curves as multiaflne maps, Theoretical foundations of computer graphics and CAD (Il Ciocco, 1987), 757-776, NATO Adv. Sci. Inst. Ser. F, Comput. Systems Sci., 40, Springer-Verlag Berlin, 1988
- [22] Ramshaw L., Blossoms are polar forms, Comput. Aided Geom. Design, 1989, 6(4), 323-358
- [23] Jegdić I., Algorithms and identities for bivariate (h1, h2)-blossoming, Int. J. Appl. Math., 2017, 30(4), 321-343
- [24] Goldman R., Simeonov P., Formulas and algorithms for quantum differentiation of quantum Bernstein bases and quantum Bézier curves based on quantum blossoming, Graph. Models, 2012, 74, 326-334
- [25] Andrews G., Askey R., Roy R., Special Functions, Encyclopedia of Mathematics and its Applications, Vol. 71, Cambridge University Press, 1999
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb6e5b69-b2a3-4bb8-9508-f478d9e1d6a0