PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This short review summarizes the issue of boron distribution monitoring in boron neutron capture therapy (BNCT), which remains a serious drawback of this powerful oncological treatment. Here we present the monitoring methods that are presently used with particular emphasis on the positron emission tomography (PET) which has the highest potential to be used for the realtime monitoring of boron biodistribution. We discuss the possibility of using present PET scanners to determine the boron uptake in vivo before the BNCT treatment with the use of p-boronphenylalanine (BPA) labeled with 18F isotope. Several examples of preclinical studies and clinical trials performed with the use of [18F]FBPA are shown. We also discuss shortly the perspectives of using other radiotracers and boron carriers which may signifi- cantly improve the boron imaging with the use of the state-of-the-art Total-Body PET scanners providing a theranostic approach in the BNCT.
Rocznik
Strony
293--300
Opis fizyczny
Bibliogr. 57 poz., rys.
Twórcy
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Cracow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Cracow, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Cracow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Cracow, Poland
Bibliografia
  • 1. Japanese Society of Neutron Capture Therapy. What is BNCT? [Online]. Available from: http://www.jsnct.jp/e/about_nct/gen.html [Accessed 24 Aug 2021].
  • 2. Sauerwein WAG. Principles and roots of neutron capture therapy. In: Sauerwein WAG, Wittig A, Moss R, Nakagawa Y, editors. Neutron capture therapy: principles and applications. Berlin Heidelberg: Springer-Verlag; 2012.
  • 3. Nedunchezhian K, Aswath N, Thiruppathy M, Thirugnanamurthy S. Boron neutron capture therapy-A literature review. J Clin Diagn Res 2016;10:ZE01-4.
  • 4. Enger SA, Giusti V, Fortin M-A, Lundqvist H, Rosenschöld PM. Dosimetry for gadolinium neutron capture therapy (GdNCT). Radiat Meas 2013;59:233-40.
  • 5. Gibson CR, Staubus AE, Barth RE, Yang W, Ferkefich AK, Moeschberger MM. Pharmacokinetics of sodium borocaptate: a critical assessment of dosing paradigms for boron neutron capture therapy. J Neuro Oncol 2003;62:157-69.
  • 6. Michiue H, Sakurai Y, Kondo N, Kitamatsu M, Bin F, Nakajima K, et al. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials 2014;35:3396-405.
  • 7. Stella Pharma Corporation. News release: STELLA PHARMA will launch Steboronine®, the World’s first BNCT drug, on May 20; 2020. Available from: https://stella-pharma.co.jp/cp-bin/wordpress5/wp-content/uploads/2020/05/Steboroninelaunched_ENG.pdf [Accessed 25 Aug 2021].
  • 8. Nakamura H, Kirihata M. Boron compounds: new candidates for boron carriers in BNCT, principles and roots of neutron capture therapy. In: Sauerwein WAG, Wittig A, Moss R, Nakagawa Y, editors. Neutron capture therapy: principles and applications. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg; 2012.
  • 9. Taskaev S, Berendeev E, Bikchurina M, Bykov T, Kasatov D, Kolesnikov I, et al. Neutron source based on vacuum insulated tandem accelerator and lithium target. Biology 2021;10:350.
  • 10. Kreiner AJ. Accelerator-based BNCT. In: Sauerwein WAG, Wittig A, Moss R, Nakagawa Y, editors. Neutron capture therapy: principles and applications. Berlin Heidelberg: Springer-Verlag; 2012.
  • 11. Wittig A, Sauerwein WAG. Boron analysis and boron imaging in BNCT. In: Sauerwein WAG, Wittig A, Moss R, Nakagawa Y, editors. Neutron capture therapy: principles and applications. Berlin Heidelberg: Springer-Verlag; 2012.
  • 12. Bendel P, Sauerwein W. Optimal detection of the neutron capture therapy agent borocaptate sodium (BSH): a comparison between 1 H and 10B NMR. Med Phys 2001;28:178.
  • 13. Timonen M, Kankaanranta L, Lundbom N, Collan J, Kangasmaki A, Kortesniemi M, et al. 1 H MRS studies in the Finnish boron neutron capture therapy project: detection of 10B-carrier, L-p-boronophenylalanine-fructose. Eur J Radiol 2005;56: 154-9.
  • 14. Porcari P, Capuani S, D’Amore E, Lecce M, La Bella A, Fasano F, et al. In vivo 19F MR imaging and spectroscopy for the BNCT optimization. Appl Radiat Isot 2009;67:S365-8.
  • 15. Icten O, Ali Kose D, Matissek SJ, Misurelli JA, Elsawa SF, Hosmane NS, et al. Gadolinium borate and iron oxide bioconjugates: nanocomposites of next generation with multifunctional applications. Mater Sci Eng C 2018;92:317-28.
  • 16. Alberti D, Protti N, Toppino A, Deagostino A, Lanzardo S, Bortolussi S, et al. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of Boron Neutron Capture Therapy in the lung cancer treatment. Nanomed Nanotechnol Biol Med 2015;11:741-50.
  • 17. Sauerwein WAG, Sancey L, Hey-Hawkins E, Kellert M, Panza L, Imperio D, et al. Theranostics in boron neutron capture therapy. Life 2021;11:330.
  • 18. Valda A, Minsky DM, Kreiner AJ, Burlon AA, Somacal H. Development of a tomographic system for online dose measurements in BNCT (boron neutron capture therapy). Braz J Phys 2005;35:785.
  • 19. Manabe M, Nakamura S, Murata I. Study on measuring device arrangement of array-type CdTe detector for BNCT-SPECT. Rep Radiother Oncol 2016;21:102-7.
  • 20. Gong C, Tang X, Fatemi S, Yu H, Shao W, Shu D, et al. A Monte Carlo study of SPECT in boron neutron capture therapy for a heterogeneous human phantom. Int J Radiat Res 2018;16:33-43.
  • 21. Glaudemans AW, Enting RH, Heesters MA, Dierckx RA, van Rheenen RW, Walenkamp AM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imag 2013;40:615-35.
  • 22. Sharma R, D’Souza M, Jaimini A, Hazari PP, Saw S, Pandey S, et al. A comparison study of (11)C-methionine and (18) F-fluorodeoxyglucose positron emission tomography-computed tomography scans in evaluation of patients with recurrent brain tumors. Indian J Nucl Med 2016;31:93-102.
  • 23. Alavi A, Hess S, Werner TJ, Høilund-Carlsen PF. An update on the unparalleled impact of FDG-PET imaging on the day-to-day practice of medicine with emphasis on management of infectious/inflammatory disorders. Eur J Nucl Med Mol Imag 2020;47:18-27.
  • 24. Ishiwata K, Ido T, Mejia AA, Ichihashi M, Mishima Y. Synthesis and radiation dosimetry of 4-borono-2-[18F]fluoroD,Lphenylalanine: a target compound for PET and boron neutron capture therapy. Int J Radiat Appl Instrum A 1991;42:325-8.
  • 25. Ishiwata K. 4-Borono-2-18F-fluoro-l-phenylalanine PET for boron neutron capture therapy-oriented diagnosis: overview of a quarter century of research. Ann Nucl Med 2019;33:223-36.
  • 26. Ishiwata K, Ido T, Kawamura M, Kubota K, Ichihashi M, Mishima Y. 4-Borono-2-[18F]fluoro-d,l-phenylalanine as a target compound for boron neutron capture therapy: tumor imaging potential with positron emission tomography. Nucl Med Biol 1991;18:745-51.
  • 27. Coderre JA, Glass JD, Fairchild RG, Roy U, Cohen S, Fand I. Selective targeting of boronophenylalanine to melanoma in BALB/c mice for neutron capture therapy. Cancer Res 1987;47: 6377-83.
  • 28. Ishiwata K, Ido T, Honda C, Kawamura M, Ichihashi M, Mishima Y. 4-Borono-2-[18F]fluoro-d,l-phenylalanine: a possible tracer for melanoma diagnosis with PET. Nucl Med Biol 1992;19:311-8.
  • 29. Wang HE, Liao AH, Deng WP, Chang PF, Chen JC, Chen FD, et al. Evaluation of 4-borono-2-18F-fluoro-l-phenylalaninefructose as a probe for boron neutron capture therapy in a glioma bearing rat model. J Nucl Med 2004;45:302-8.
  • 30. Evangelista L, Jori G, Martini D, Sotti G. Boron neutron capture therapy and 18F-labelled borophenylalanine positron emission tomography: a critical and clinical overview of the literature. Appl Radiat Isot 2013;74:9-101.
  • 31. Aihara T, Hiratsuka J, Morita N, Uno M, Sakurai Y, Maruhashi A, et al. First clinical case of boron neutron capture therapy for head and neck malignancies using 18F-BPA PET. Case Rep 2006;28: 850-5.
  • 32. Kabalka GW, Nichols TL, Smith GT, Miller LF, Khan MK, Busse PM. The use of positron emission tomography to develop boron neutron capture therapy treatment plans for metastatic malignant melanoma. J Neurooncol 2003;62:187-95.
  • 33. Iguchi Y, Michiue H, Kitamatsu M, Hayashi Y, Takenaka F, Nishiki T, et al. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model. Biomaterials 2015;56:10-7.
  • 34. Moskal P, Stępień EŁ. Prospects and clinical perspectives of totalbody PET imaging using plastic scintillators. Pet Clin 2020;15: 439-45.
  • 35. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys 2020;7:35.
  • 36. Cherry S, Karp J, Moses W, Qi J, Bec J, Berg E, et al. EXPLORER: an ultra-sensitive total-body PET scanner for biomedical research. In: Proceedings of IEEE nuclear science symposium and medical imaging conference; 2013:M03-01 pp.
  • 37. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 2019;60:299-303.
  • 38. Moskal P, Salabura P, Silarski M, Smyrski J, Zdebik J, Zieliński M. Novel detector systems for the positron emission tomography. Bio-Algorithms Med-Syst. 2011;7:73-8.
  • 39. Moskal P, Niedźwiecki Sz, Bednarski T, Czerwiński E, Kapłon Ł, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl Instrum Methods Phys Res A 2014; 764:317-21.
  • 40. Moskal P, Zoń N, Bednarski T, Białas P, Czerwiński E, Gajos A, et al. A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals. Nucl Instrum Methods A 2015;775: 54-62.
  • 41. Kapłon Ł. Technical attenuation length Measurement of plastic scintillator strips for the total-body J-PET scanner. IEEE Trans Nucl Sci 2020;67:2286-9.
  • 42. Kapłon Ł, Moskal G. Blue-emitting polystyrene scintillators for plastic scintillation dosimetry. Bio-Algorithms Med-Syst 2021;17: 191-7.
  • 43. Moskal P, Rundel O, Alfs D, Bednarski T, Białas P, Czerwiński E, et al. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys Med Biol 2016;61:2025.
  • 44. Wieczorek A, Dulski K, Niedźwiecki Sz, Alfs D, Białas P, Curceanu C, et al. Novel scintillating material 2-(4-styrylphenyl) benzoxazole for the fully digital and MRI compatible J-PET tomograph based on plastic scintillators. PLoS ONE 2017;12: e0186728.
  • 45. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner-an economic total-body PET from plastic scintillators. Phys Med Biol 2021;66:175015.
  • 46. Raczyński L, Wiślicki W, Klimaszewski K, Krzemień W, Kopka P, Kowalski P, et al. 3D TOF-PET image reconstruction using total variation regularization. Phys Med 2020;80: 230-42.
  • 47. Shopa RY, Klimaszewski K, Kopka P, Kowalski P, Krzemień W, Raczyński L, et al. Optimisation of the event-based TOF filtered back-projection for online imaging in total-body. J-PET Med Image Anal 2021;73:102199.
  • 48. Pałka M, Strzempek P, Korcyl G, Bednarski T, Niedźwiecki Sz, Białas P, et al. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement. J Instrum 2017;12:P08001.
  • 49. Korcyl G, Białas P, Curceanu C, Czerwiński E, Dulski K, Flak B, et al. Evaluation of single-chip, real-time tomographic data processing on FPGA SoC devices. IEEE Trans Med Imag 2018;37: 2526-35.
  • 50. Moskal P. A hybrid TOF-PET/CT tomograph. European patent EP 3039456, 2019.
  • 51. Moskal P. Hybrid TOF-PET/MRI tomograph. United States patent US 10,520,568, 2019.
  • 52. Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun 2021;12: 5658.
  • 53. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv 2021;7:eabh4394.
  • 54. Moskal P, Kisielewska D, Bura Z, Chhokar C, Curceanu C, Czerwiński E, et al. Performance assessment of the 2γ positronium imaging with the total-body PET scanners. EJNMMI Phys 2021;7:44.
  • 55. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019;64: 055017.
  • 56. Moskal P, Jasińska B, Stępień EŁ, Bass SD. Positronium in medicine and biology. Nature Rev Phys 2019;1:527-9.
  • 57. Sitarz M, Cussonneau J-P, Matulewicz T, Haddad F. Radionuclide candidates for β+ γ coincidence PET: an overview. Appl Radiat Isot 2020;155:108898.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb672202-4e47-4cc8-b50d-53005beaa0ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.