PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of heavy metals by energy crops when grown on technologically contaminated soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The publication presents data on the removal of heavy metals by energy crops Miscanthus giganteus L. and Phalaris arundinacea L. when grown on technologically polluted soils. The yield of Miscanthus giganteus averaged 16.96 t/ha over the two years of research, and that of Falaris arundinacea - 4.38 t/ha, respectively. The nature of heavy metal accumulation by energy plants depended on the type of crop and its productivity during the years of cultivation. The concentration of all heavy metals in the phytomass of energy crops did not exceed the threshold limit value (TLV), except for zinc in miscanthus giganteus plants (by 9-11 mg/kg). Compared to the years of the study, in the second year of cultivation, the coefficient of heavy metal absorption by plants increased significantly compared to the first year due to an increase in the vegetative mass of plants. On average, in 2021-2023, the energy crops Phalaris arundinacea and Miscanthus x giganteus removed a significant amount of heavy metals from 1 ha of soil. It has been proven that energy crops such as Phalaris arundinacea and Miscanthus x giganteus contribute to the purification of technologically contaminated soils from heavy metals, and their products can be used further as biofuels and for other purposes, as the content of toxicants in their phytomass does not exceed the TLV.
Twórcy
  • Department of Ecology and Environmental Technologies, Zhytomyr Polytechnic State University, Chudnivska str. 103, Zhytomyr, 10005, Ukraine
  • Department of International Relations and Political Management, Zhytomyr Polytechnic State University, Chudnivska str. 103, Zhytomyr, 10005, Ukraine
  • Department of Botany, Bioresources and Biodiversity Conservation, Zhytomyr Ivan Franko State University, Velyka Berdychivska str. 40, Zhytomyr, 10008, Ukraine
  • Department of Botany, Bioresources and Biodiversity Conservation, Zhytomyr Ivan Franko State University, Velyka Berdychivska str. 40, Zhytomyr, 10008, Ukraine
  • Renewable Energy Agency (REA), Ukraine
Bibliografia
  • 1. Alasmary Z., Hettiarachchi G. M., Roozeboom K. L., Davis L. C., Erickson L. E., Pidlisnyuk V., Stefanovska T., Trögl J. (2021). Phytostabilisation of a contaminated military site using Miscanthus and soil amendments. Journal of Environmental Quality, 50(5). 1220–1232. https://doi.org/10.1002/ jeq2.20268
  • 2. Baranov V. I., Knish I. B., Blaida I. A., Vaschuk S. P., Gavriljak M. J. (2012). Cane - phytoremediant of heavy metals in drainage ditch rock dump coal mines. Studia Biologica. 6(1), 93–100. https://doi. org/10.30970/sbi.0601.188
  • 3. Bourgeois, E., Dequiedt, S., Lelièvre, M., van Oort, F., Lamy, I., Ranjard, L., & Maron, P. A. (2015). Miscanthus bioenergy crop stimulates nutrient-cycling bacteria and fungi in wastewater-contaminated agricultural soil. Environmental Chemistry Letters, 13(4), 503–511. https://doi.org/10.1007/ s10311-015-0532-4
  • 4. Datsko O. M., Yatsenko V. M. (2024). Modern methods of soil remediation. Phytoremediation as a key to soil purification and ecosystem preservation. Agrarian innovations, 2. 20–24. https://doi. org/10.32848/agrar.innov
  • 5. de Abreu, C. A., Coscione, A. R., Pires, A. M., & Paz-Ferreiro, J. (2012). Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. Journal of Geochemical Exploration, 123, 3–7. https:// doi.org/10.1016//j.gexplo.2012.04.013
  • 6. Ezaki, B., Nagao, E., Yamamoto, Y., Nakashima, S., & Enomoto, T. (2008). Wild plants, Andropogon virginicus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminium, heavy metals and oxidative stresses. Plant Cell Reports, 27(5), 951–961. https://doi.org/10.1007/ s00299-007-0503-8
  • 7. Fijalkowski, K., Rosikon, K., Grobelak, A., Hutchison, D., & Kacprzak, M. J. (2018). Modification of properties of energy crops under Polish condition as an effect of sewage sludge application onto degraded soil. Journal of Environmental Management, 217, 509–519. https://doi.org/10.1016/j. jenvman.2018.03.132
  • 8. Ghous M., Iqbal S., Bakhtavar M. A., Nawaz F., Haq T. U., Khan S. (2022). Halophyte quinoa: A potential hyperaccumulator of heavy metals for phytoremediation. Asian Journal of Agriculture and Biology, 4, 9. https://doi.org/10.35495/ajab.2021.444
  • 9. Golets, N. Y., Malʹovanyy, M. S., & Malyk, Y. O. (2009). Investigation of the properties of the filtration screen of solid waste landfill [Investigation of the properties of the filtration screen of solid waste landfill]. Bulletin of the National University “Lviv Polytechnic”, 644, 195–198 (in Ukrainian).
  • 10. Hromádko, L., Vranová, V., Techer, D., Laval-Gilly, P., Rejšek, K., Formánek, P., & Falla, J. (2010). Composition of root exudates of Miscanthus × Giganteus Greef et Deu. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis Sborník Mendelovy University v Brně, 58(1), 71–76. https://doi.org/10.11118/actaun201058010071
  • 11. Karmazynenko S.P., Kuraeva I.V., Samchuk A.I., Voytiuk Yu.Yu., Manichev V.Y. (2014). Heavy metals in environmental components of the city of Mariupol (ecological-geochemical aspects). K.: Interservice, 168. [in Ukrainian].
  • 12. Kayama, M. (2001). Comparison of the aluminum tolerance of miscanthus sinensis anderss. and miscanthus sacchariflorus bentham in hydroculture. International Journal of Plant Sciences, 162(5), 1025–1031. https://doi.org/10.1086/322890
  • 13. Kipnis L. S., Kotsar O. M., Lekontseva T. I. (2010). The role of common reed and narrow-leaved cattail in the utilisation of heavy metals in wastewater treatment. Science zap Ternopil national ped. University. 2(43), 222–225. [in Ukrainian].
  • 14. Kulik, M. I. (2016). Energeticheskiye kul’tury dlya ochishcheniya pochv ot tyazhelykh metallov i polucheniya biotopliva [Energy crops for the purification of soils from heavy metals and the production of biofuels]. In N. V. Byshova (Ed.), Modern energy and resource-saving environmentally sustainable technologies and systems of agricultural production (364–367). FGBOU VGATU, Ryazan (in Ukrainian).
  • 15. Kulyk, M. I., Galytska, M. A., Samoylik, M. S., & Zhornyk, I. I. (2019). Phytoremediation aspects of energy crops use in Ukraine. Agrology, 2(1), 65–73. doi:10.32819/2617-6106.2018.14020
  • 16. Marques, A. P. G. C., Rangel, A. O. S. S., & Castro, P. M. L. (2009). Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology. Critical Reviews in Environmental Science and Technology, 39(8), 622–654. doi:10.1080/10643380701798272
  • 17. Meers, E., Van Slycken, S., Adriaensen, K., Ruttens, A., Vangronsveld, J., Du Laing, G., Witters, N., Thewys, T., & Tack, F. M. G. (2010). The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: A field experiment. Chemosphere, 78(1), 35–41. https://doi.org/10.1016/j.chemosphere.2009.08.015
  • 18. Meers, E., Vandecasteele, B., Ruttens, A., Vangronsveld, J., Tack, F. M. G. (2007). Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environmental and Experimental Botany, 60(1), 57–68. https://doi.org/10.1016/j. envexpbot.2006.06.008
  • 19. Nebeská D., Pidlisnyuk V., Stefanovska T., Trögl J., Shapoval P., Popelka J., Černý J., Medkow A., Kvak V., Malinská H. (2019). Impact of plant growth regulators and soil properties on Miscanthus x giganteus biomass parameters and uptake of metals in military soils. Reviews on Environmental Health, 34, 3. 283–291. https://doi.org/10.1515/ reveh-2018-008822
  • 20. Nsanganwimana, F., Pourrut, B., Mench, M., & Douay, F. (2014). Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. Areview. Journal of Environmental Management, 143, 123– 134. https://doi.org/10.1016/j.jenvman.2014.04.027
  • 21. Nsanganwimana, F., Pourrut, B., Waterlot, C., Louvel, B., Bidar, G., Labidi, S., Fontaine, J., Muchembled, J., Lounès-Hadj Sahraoui, A., Fourrier, H., & Douay, F. (2015). Metal accumulation and shoot yield of Miscanthus × giganteus growing in contaminated agricultural soils: Insights into agronomic practices. Agriculture, Ecosystems & Environment, 213, 61–71. https://doi.org/10.1016/j. agee.2015.07.023
  • 22. Nurzhanova A., Pidlisnyuk V., Abit K., Nurzhanov C., Kenessov B., Stefanovska T., Erickson L. (2019). Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated with heavy metals: A case of military and mining sites. Environmental Science and Pollution Research, 26, 13, 13320–13333. https://doi.org/10.1007/s11356-019-04707-z
  • 23. Nurzhanova, A., Pidlisnyuk, V., Kalugin, S., Stefanovska, T., & Drimal, M. (2015). Miscanthus x giganteus as a new highly efficient phytoremediation agent for improving soils contaminated by pesticide residues and supplemented contaminants. Communications in Agricultural and Applied Biological Sciences, 80(3), 361–366.
  • 24. Pandey, V. C., Pandey, D. N., & Singh, N. (2015). Sustainable phytoremediation based on naturally colonising and economically valuable plants. Journal of Cleaner Production, 86, 37–39. https://doi. org/10.1016/j.jclepro.2014.08.030
  • 25. Petrushka I. M., Volivach T. I. (2024). Phytoremediation of soils contaminated with heavy metals. Environmental security of the state. 136–138. https:// doi.org/10.18372/2786-8168.18.18591
  • 26. Pidlisnyuk, V. V., Erickson, L. E., Trögl, J., Shapoval, P. Y., Popelka, J., Davis, L. C., Stefanovska, T. R., & Hettiarachchi, G. M. (2018). Metals uptake behaviour in Miscanthus x giganteus plant during growth in the contaminated soil from the military site in Sliač, Slovakia. Polish Journal of Chemical Technology, 20(2), 1–7. https://doi.org/10.2478/pjct-2018-0016
  • 27. Pidlisnyuk, V. V., Erickson, L. E., Trögl, J., Shapoval, P. Y., Popelka, J., Davis, L. C., Stefanovska, T. R., & Hettiarachchi, G. M. (2018). Metals uptake behaviour in Miscanthus x giganteus plant during growth in the contaminated soil from the military site in Sliač, Slovakia. Polish Journal of Chemical Technology, 20(2), 1–7. https://doi.org/10.2478/pjct-2018-0016
  • 28. Pidlisnyuk, V., Stefanovska, T., Lewis, E. E., Erickson, L. E., & Davis, L. C. (2014). Miscanthus as a productive biofuel crop for phytoremediation. Critical Reviews in Plant Sciences, 33(1), 1–19. https:// doi.org/10.1080/07352689.2014.847616
  • 29. Pidlisnyuk, V., Stefanovska, T., Lewis, E. E., Erickson, L. E., & Davis, L. C. (2014). Miscanthus as a productive biofuel crop for phytoremediation. Critical Reviews in Plant Sciences, 33(1), 1–19. https://doi.org/10.1080/07352689.2014.847616
  • 30. Rascio N., Navari-Izzo F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 2, 169–181. https://doi.org/10.1016/j. plantsci.2010.08.016
  • 31. Romanchuk L. D., Kovalev V. B., Mozharivska I. A. (2021). Cultivation of giant miscanthus in conditions of radioactive contamination. Collection of works of the participants of the International Scientific and Practical Conference Chernobyl Catastrophe. Actual problems, directions and ways to solve them (April 22–23, 2021). Zhytomyr: University of Polissia, 68–73. [in Ukrainian].
  • 32. Romanchuk L.D., Vyshnivskyi P.S., Mozharivska I.A. (2022). The concentration of heavy metals in the phytomass of energy crops when grown in the conditions of Zhytomyr Polissia. Agrobiology, 2, 13–18. https:// doi.org/10.33245/2310-9270-2022-174-2-13-18
  • 33. Romantschuk L., Matviichuk N., Mozharivska I., Matviichuk B., Ustymenko V., Tryboi O. (2024). Phytoremediation of soils by cultivation of miscanthus x giganteus l. and Phalaris arundinacea L. Ecological Engineering & Environmental Technology, 25(6), 137–147. https://doi. org/10.12912/27197050/186902
  • 34. Samokhvalova V. L. (2014). Biological methods of remediation of soils contaminated with heavy metals. Biological Studies, 8(1), 217–236. [in Ukrainian].
  • 35. Técher, D., Laval-Gilly, P., Henry, S., Bennasroune, A., Formanek, P., Martinez-Chois, C., D’Innocenzo, M., Muanda, F., Dicko, A., Rejšek, K., & Falla, J. (2011). Contribution of Miscanthus x giganteus root exudates to the biostimulation of PAH degradation: An in vitro study. Science of The Total En- vironment, 409(20), 4489–4495. https://doi. org/10.1016/j.scitotenv.2011.06.049
  • 36. Tsytsiura Y. G., Shkatula Y. M., Zabarna T. A., Peleh L. V. (2022). Innovative approaches to phytoremediation and phytoremediation in modern farming systems. Monograph. Vinnytsia: “Druk” LLC, 1200. [in Ukrainian].
  • 37. Witters N., Mendelsohn R. O., Van Slycken S., Weyens N., Schreurs E., Meers E., Tack F., Carleer & R., Vangronsveld J. (2012). Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy production and carbon dioxide abatement. Biomass and Bioenergy, 39, 454–469. https://doi.org/10.1016/j.biombioe.2011.08.016
  • 38. Zaitsev Yu., Hryshchenko O., Romanova S., Zaitseva I. (2022). Influence of combat actions on the content of gross forms of heavy metals in the soils of Sumy and Okhtyrka districts of Sumy region. Agroecological journal. 3, 136–149. https://doi. org/10.33730/2077-4893.3.2022.266419
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb66243c-ed65-4fd1-9dd3-8462319faaa4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.