Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Time-frequency algorithms help discern and filter hidden information from signals but their growing abundance induces non-uniqueness thus, complicating selection. Classification of these algorithms into approaches can bring simplification and structure to improve our selection and estimates. This study focuses on algorithms we classify here as fixed windowbased projection approach, wavelet-based projection approach, greedy-based approach and combinational-based approach while omitting heuristic-based approach and numerical-autoregressive-based approach classes. It describes the basic theory of transforms under the classes and compares them for effective stability, effective localization and resolution capabilities of time-frequency spectra for wavelet estimation and interfering beds with results demonstrating subtle advantages for each depending on nature of signal and model behind the algorithm. The combinational-based mixed-model approach wavelet-assisted constrained least squares spectral analysis concatenates a wavelet-based approach with a fixed windowbased approach and effectively functions to reassign complex amplitude coefficients from their apparent positions to their true positions. A comparison of the results suggests that it demonstrates good scope as an effective alternative general tool for hydrocarbon detection and resolution of thin beds.
Wydawca
Czasopismo
Rocznik
Tom
Strony
637--653
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
autor
- Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
autor
- Spectral Geosolutions, Houston, TX, USA
autor
- Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
Bibliografia
- 1. Boteler D (2012) On choosing Fourier transforms for practical geoscience applications. Int J Geosci 3:952-959
- 2. Castagna JP, Sun S (2006) Comparison of spectral decomposition methods. EAGE First Break 24:75-79
- 3. Chakraborty A, Okaya D (1995) Frequency-time decomposition of seismic data using wavelet-based methods. Geophysics 60(6):1906-1916
- 4. Chen Y, Zhenhua H, Deji H (2006) Effects of Gabor transform parameters on signal time-frequency resolution. Appl Geophys 3:169-173
- 5. Christensen D, Das S, Srivastava AN (2009) Highly scalable matching pursuit signal decomposition algorithm. NASA Undergraduate Student Research Program (USRP), pp 1-11
- 6. Farfour M, Ferahtia J, Djarfour N, Aitouch MA (2017) Seismic spectral decomposition applications in seismic: a review and application. Oil Gas Explor Methods Appl 72(1):93-113
- 7. Fomel S (2006) Local seismic attributes. In: SEG New Orleans annual meeting, pp 1228-1232
- 8. Fomel S (2007) Shaping regularization in geophysical-estimation problems. Geophysics 72(2):R29-R36
- 9. Fomel S (2008) Non-linear shaping regularization in geophysical inverse problems. In SEG Las Vegas annual meeting, pp 2046-2051
- 10. Gabor D, Ing D (1946) Theory of communication part 1. Institution of Engineering and Technology, pp 429-457
- 11. Ghaderpour E, Pagiatakis SD (2017) Least-squares wavelet analysis of unequally spaced and non- stationary time series and its applications. Math Geosci 49(7):819-844
- 12. Ghaderpour E, Ince ES, Pagiatakis SD (2018a) Least-squares crosswavelet analysis and its applications in geophysical time series. J Geodesy 92(10):1223-1236
- 13. Ghaderpour E, Liao W, Lamoureux MP (2018b) Antileakage leastsquares spectral analysis for seismic data regularization and random noise attenuation. Geophysics 83(3):V157-V170
- 14. Gholami A (2012) Sparse time-frequency decomposition and some applications. IEEE Trans Geosci Remote Sens 51(6):3598-3604
- 15. Huang NE, Shen Z, Long S, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HHR (1998) The empirical mode decomposition and the Hilbert spectrum for non linear and non stationary time series analysis. Proc R Soc, pp 903-995
- 16. Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics, pp 336
- 17. Kirsch A (2011) An introduction to the mathematical theory of inverse problems. Springer, pp 314
- 18. Lee DTL, Yamamoto A (1994) Wavelet analysis: theory and applications. Hewlett Packard J 45(6):44-52
- 19. Liu G, Fomel S (2009) Time-frequency characterization of seismic data using local attributes. SEG Houston international exposition and annual meeting, pp 1825-1829
- 20. Liu J, Marfurt KJ (2005) Matching pursuit decomposition using Morlet wavelets, SEG/Houston Annual Meeting, pp 786-790
- 21. Mahdavi A, Kahoo AR, Radad M, Monfared MS (2021) Application of the local maximum synchrosqueezing transform for seismic data. Digital Signal Process 110:102934
- 22. Niu R (2006) Fourier series and their applications. MIT, pp 1-13, https://dspace.mit.edu/bitstream/handle/1721.1/78574/18-100c-spring2006/contents/projects/niu.pdf
- 23. Pant A (2019) Frontier seismic spectral decomposition methods & new insights into offshore nova scotia using CLSSA and Weighted Spectral Blending. M. Tech Dissertation, Indian Institute of Technology (IIT) Kanpur
- 24. Pant A, Ghosal D, Puryear CI (2022) Imaging a possible isolated carbonate build-up at anomalous low frequencies. Marine Geophys Res 43(4):1-14. https://doi.org/10.1007/s11001-022-09466-0
- 25. Pant A, Ghosal D, Puryear CI (2019) Improved reservoir delineation in complex geologic settings using CLSSA: a case study from offshore Nova Scotia. In: 81st EAGE annual conference and exhibition, pp 1-4. https://doi.org/10.3997/2214-4609.201900687
- 26. Pant A, Ghosal D, Puryear CI (2020) Comparative study of waveletbased recent spectral decomposition algorithms for seismic signals. In: 82nd EAGE annual conference and exhibition, pp 1-4
- 27. Puryear C, Portniaguine O, Cobos C, Castagna JP (2012) Constrained least squares spectral analysis: application to seismic data. Geophysics 75(5):V143-167
- 28. Qayyum F, Catuneanu O, Bouanga CE (2015) Sequence stratigraphy of a mixed siliciclastic-carbonate setting, Scotian Shelf Canada. Interpretation 3(2):21-37. https://doi.org/10.1190/ INT-2014-0129.1
- 29. Radad M (2018) Application of single-frequency time-space filtering technique for seismic ground roll and random noise attenuation. J Earth Space Phys 44(4):41-51
- 30. Radad M, Gholami A, Siahkoohi HR (2015) S-transform with maximum energy concentration and its application to detect gas bearing zones and low-frequency shadows. J Earth Space Phys 41(3):403-412
- 31. Radad M, Gholami A, Siahkoohi HR (2016) A fast method for generating high-resolution single-frequency seismic attributes. J Seism Explor 25:11-25
- 32. Radad M, Gholami A (2014) Constant Q analysis by optimized sparse s-transform. In: 76th EAGE conference and exhibition 2014 (vol 2014, No. 1, pp 1-3). European Association of Geoscientists and Engineers
- 33. Rayner JN (2001) Spectral analysis. Int J Soc Behav Sci 2001:14861-14864
- 34. Sinha S, Routh PS, Anno PD, Castagna JP (2005) Spectral decomposition of seismic data with continuous-wavelet transform. Geophysics 70(6):P19-P25
- 35. Tary JB, Herrera RH, Han J, van der Baan M (2014) Spectral estimation- what is new? What is next? AGU Rev Geophys 52:723-749 Tianzi Z, Wei S (2012) An application of matching pursuit time-frequency decomposition method using multi-wavelet dictionaries. Pet Sci 9(3):310-316
- 36. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc, pp 61-78
- 37. Torres ME, Colominas MA, Schlotthauer G, Flandrin P (2011) A complete ensemble empirical mode decomposition with adaptive noise. In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp 4144-4147
- 38. Vanicek P (1969) Approximate spectral analysis by least-squares fit. Astrophys Space Sci 4:387-391
- 39. Vanicek P (1971) Further development and properties of the spectral analysis by least-squares. Astrophys Space Sci 12(1):10-33
- 40. Wang Y (2007) Seismic time-frequency spectral decomposition by matching pursuit. Geophysics 72(1):V13-20
- 41. Wang Y (2010) Multichannel matching pursuit for seismic trace decomposition. Geophysics 75(4):V61-66
- 42. Wu L, Castagna JP, Oyem A (2017) Quantitative resolution analysis for spectral decomposition using regularized inversion. In: SEG international exposition and 87th annual meeting, pp 3123-3127
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb63cb63-557e-4593-8d41-832b4bc10145