PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A duality of biomagnetic fluid flow and heat transfer over a quadratic stretched sheet

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates duality solutions of biomagnetic fluid flow and heat transfer over a permeable quadratically stretching /shrinking sheet in the presence of a magnetic dipole. The governing nonlinear partial differential equations are converted into a set of nonlinear ordinary differential equations with the help of suitable similarity transformations and then solved numerically by using the boundary value problem solver bvp4c built in MATLAB software. We examine the effects of a variety of pertinent parameters - the ferromagnetic parameter, suction parameter, stretching/shrinking parameter - on velocity and temperature profiles, as well as the skin friction coefficient and Nusselt number, which are presented graphically. Dual solutions exist for certain values of stretching/shrinking sheet and suction parameters. The skin friction coefficient data are evaluated and compared with previous published data and better agreement is achieved. Therefore, it can be said with confidence that our present analysis is accurate. It also shows that the ferromagnetic and stretched parameters result in reduced velocity and thereby influence the temperature profile.
Rocznik
Strony
154--162
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
  • Department of Mathematics, Comilla, Cumilla-3506, Bangladesh
  • Fluid Mechanics & Turbomachinery laboratory, Department of Mechanical Engineering, University of the Peloponnese, Patras, Greece
  • Research group of Fluid Flow Modeling and Simulation, Department of Applied Mathematics, University of Dhaka, Dhaka-100
Bibliografia
  • 1.Veiseh, M., Gabikian, P., Bahrami, S.B., Veiseh, O., and Zhang, et al., M. (2007) Tumor paint: a chlorotoxin: Cy5.5 bio conjugate for intraoperative visualization of cancer foci. J Cancer Research, 67.
  • 2.Glover, P. (2001) Limits to magnetic resonance microscopy. J Reports on Progress in Physics, 65.
  • 3.Kooi, M.E., Cappendijk, V.C., Cleutjens, K.B., Kessels, A.G., and Kitslaar, P.J.et al. (2003) Accumulation of ultra-smalls upper paramagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. J Circulation, 107.
  • 4. (2004) .: In vivo detection of macrophages in human carotid atheroma-temporal dependence of ultra-small super paramagnetic particles of iron oxide enhanced MRI. J Stroke, 35.
  • 5.Lin, W.L., Yen, J.Y., Chen, Y.Y., KW, J., and MJ, S. (1999) Relationship between acoustic aperture size and tumor conditions for external ultrasound hyperthermia. Med. Phys, 26.
  • 6.Stemme, O. (1998) Magnetic wound treatment, in Magnetism in Medicine, Wiley, Berlin.
  • 7.Haik, Y., V, P., and J, C.C. (1999) Biomagnetic fluid dynamics, in Fluid Dynamics at Interfaces, Cambridge University Press.
  • 8.Tzirtzilakis, E.E. (2005) A mathematical model for blood flow in magnetic field. Phys Fluids, 17.
  • 9.Loukopoulos, V., and E, T.E. (2004) Biomagnetic channel flow in spatially varying magnetic field. Int J Eng Sci, 42.
  • 10.Misra, J.C., and Shit, G.C. (2009) Biomagnetic viscoelastic fluid flow over a stretching sheet. Appl Math Comput, 210.
  • 11.Beg, O.A., Takhar, H.S., Bhargava, R., Sharma, S., and Hung, T.-K. (2007) Mathematical modeling of biomagnetic flow in a micropolar fluid-saturated Darcian porous medium. Int J Fluid Mech Res, 34.
  • 12.Beg, O.A., Bhargava, R., Rawat, S., Halim, K., and Takhar, H.S. (2008) Computational modelling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium. Meccanica, 43.
  • 13.Misra, J.C., and Shit, G.C. (2009) Flow of a biomagnetic Visco- Elastic fluid in a channel with stretching walls. Trans ASME J Appl Mech, 76.
  • 14.Murtaza, M.G., Ferdows, M., Misra, J.C., and Tzirtzilakis, E.E. (2019) Three-dimensional biomagnetic Maxwell fluid flow over a stretching surface in presence of heat source/sink,. International Journal of Biomathematics, 12.
  • 15.Murtaza, M.G., Ferdows, M., and Tzirtzilakis, E.E. (2017) Effect of electrical conductivity and magnetization on the biomagnetic fluid flow over a stretching sheet. Z. Angew. Math. Phys, 68.
  • 16.Nasir, N.A.A.M., Ishak, A., and Pop, I. (2017) Stagnation-point flow and heat transfer past a permeable quadratically stretching/shrinking sheet. Chinese Journal of Physics, 55.
  • 17.Nazar, R., Arifin, N.M., Hafidzuddin, E.H., and Pop, I. (2015) Modelling of Stagnation-Point Flow and Diffusion of Chemically Reactive Species Past A Permeable Quadratically Stretching/Shrinking Sheet. International Conference on Modelling, Simulation and Applied Mathematics.
  • 18.Raptis, A., and Perdikis, C. (2006) Viscous Flow over a Nonlinearly Stretching Sheet in the Presence of a Chemical Reaction and Magnetic Field. Int. J. Non-Linear Mech., 41.
  • 19.Ferdows, M., Murtaza, G.M., Misra, J.C., Tzirtzilakis, E.E., and Alsenafi, A. (2020) Dual solutions in biomagnetic fluid flow and heat transfer over a nonlinear stretching/shrinking sheet: application of lie group transformation method. Mathematical Biosciences and Engineering Volume, 17(5).
  • 20.Naganthran, K., and Nazar, R. (2017) Dual Solutions of MHD Stagnation-point Flow and Heat Transfer past a Stretching/Shrinking Sheet in a Porous Medium. 4th International Conference on Mathematical Science AIP Conf..
  • 21.Hafidzuddin, E.H., Nazar, R., Arifin, M., and Pop, I. (2016) Boundary layer flow and heat transfer over s permeable exponentially stretching/shrinking sheet with generalized slip velocity. Journal of applied fluid mechanics,, 9.
  • 22.Mahapatra, T.R., Nandy, S.K., and Pop, I. (2014) Dual solutions in magnetohydrodynamics stagnation point flow and heat transfer over a shrinking surface with partial slip,. Journal of heat transfer, ASME, 136.
  • 23.Dhanai, R., Ranaa, P., and Kumar, L. (2016) Multiple solutions in MHD flow and heat transfer of Sisko fluid containing nanoparticles migration with a convective boundary condition: Critical point. The Eur. Phys. J. Plus,, 131.
  • 24.Muhammad, N., Nadeem, S., and MT, M. (2018) Impact of magnetic dipole on a thermally stratified ferrofluid past a stretchable surface. Proc IMechE Part E: J Process Mechanical Engineering, 233.
  • 25.Murtaza, M.G., Tzirtzilakis, E.E., and Ferdows, M. (2018) Biomagnetic Fluid Flow Past a Stretching/Shrinking Sheet With Slip Conditions Using Lie Group Analysis. 8th BSME International Conference on Thermal Engineering AIP Conf. Proc..
  • 26.Ziabakhsh, Z., Domairry, G., Bararnia, H., and H, B. (2010) Analytical solution of flow and diffusion of chemically reactive species over a nonlinearly stretching sheet immersed in a porous medium. J. Taiwan Inst. Chem. Eng, 41.
  • 27.Murtaza, M.G., Tzirtzilakis, E.E., and Ferdows, M. (2018) Numerical solution of three dimensional unsteady biomagnetic flow and heat transfer through stretching/shrinking sheet using temperature dependent magnetization. Archives of mechanics, 70.
  • 28.Rosca, A.V., Rosca, N.C., and Pop, I. (2016) Numerical simulation of the stagnation point flow past a permeable stretching/shrinking sheet with convective boundary condition and heat generation. International Journal of Numerical Methods for Heat & Fluid Flow, 26.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb61bbea-5eed-4212-a419-566da54c9097
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.