Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cadmium-bearing zinc ferrite (CBZF) is an unavoidable product in zinc smelting industry during the roasting stage for high cadmium-containing zinc concentrate. In this work, the influences of temperature, initial sulfuric acid concentration and partial pressure of sulfur dioxide on cadmium leaching were investigated. The results showed that an increase of temperature, sulfuric acid concentration and partial pressure of sulfur dioxide significantly enhanced the cadmium leaching efficiency. The maximum leaching efficiency of cadmium reached 99.2% at the temperature of 85°C, the initial sulfuric acid concentration of 80 g/L and the partial pressure of sulfur dioxide of 200 kPa. H+ played a key role during the reductive decomposition process of CBZF. The probable reaction mechanisms and the diagrammatic sketch were presented.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
965--971
Opis fizyczny
Bibliogr. 27 poz., fot., rys., tab., wzory
Twórcy
autor
- Hunan City University, School of Municipal and Mapping Engineering, 413000, Yiyang Hunan, China
autor
- Hunan City University, School of Municipal and Mapping Engineering, 413000, Yiyang Hunan, China
Bibliografia
- [1] X. Wu, Y. Liang, T. Jin, T. Ye, Q. Kong, Z. Wang, L. Lei, I.A. Bergdahl, G.F. Nordberg, Renal effects evolution in a Chinese population after reduction of cadmium exposure in rice. Environ. Res. 108, 233-238 (2008).
- [2] X.B. Min, X.D. Xie, L.Y. Chai, Y.J. Liang, M. Li, Y. Ke, Environmental availability and ecological risk assessment of heavy metals in zinc leaching residue. Trans. Nonferrous Met. Soc. China 23, 208-218 (2013).
- [3] X.D. Xie, X.B. Min, L.Y. Chai, C.J. Tang, Y.J. Liang, M. Li, Y. Ke, J. Chen, Y. Wang, Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation-flotation process. Environ. Sci. Pollut. Res. 20, 6050-6058 (2013).
- [4] N. Leclerc, E. Meux, J. M. Lecuire, Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy 70, 175-183 (2003).
- [5] B. Janković, S. Stopić, A. Güven, B. Friedrich, Kinetic modeling of thermal decomposition of zinc ferrite from neutral leach residues based on stochastic geometric model. J. Magn. Mater. 358, 105-118 (2014).
- [6] Y. Zhang, X. Li, L. Pan, X. Liang, X. Li, Studies on the kinetics of zinc and indium extraction from indium-bearing zinc ferrite. Hydrometallurgy 100, 172-176 (2010).
- [7] C. Zhang, J.Q. Zhang, X.B. Min, M. Wang, B.S. Zhou, C. Shen, Kinetics of Reductive Acid Leaching of Cadmium-Bearing Zinc Ferrite Mixture Using Hydrazine Sulfate. JOM 67, 2028-2037 (2015).
- [8] C. Reitz, C. Suchomski, V.S. Chakravadhanula, I. Djerdj, Z. Jaglicic, T. Brezesinski, Morphology, microstructure, and magnetic properties of ordered large-pore mesoporous cadmium ferrite thin film spin glasses. Inorg. Chem. 52, 3744-3754 (2013).
- [9] D. Ravinder, Electrical transport properties of cadmium substituted copper ferrites. Mater. Lett. 43, 129-138 (2000).
- [10] Š. Langová, J. Leškoa, D. Matýsek, Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy 95, 179-182 (2009).
- [11] F. Elgersma, G.J. Witkamp, G. Rosmale, Kinetics and mechanism of reductive dissolution of zinc ferrite in H2O and D2O. Hydrometallurgy 33, 165-176 (1993).
- [12] X. Wang, C. Srinivasakannan, X.H. Duan, J.H. Peng, D.J. Yang, S.H. Ju, Leaching kinetics of zinc residues augmented with ultrasound. Sep. Purif. Technol. 115, 66-72 (2013).
- [13] C. Zhang, X.B. Min, J.Q. Zhang, M. Wang, Y.C Li, J.C. Fei, Reductive clean leaching process of cadmium from hydrometallurgical zinc neutral leaching residue using sulfur dioxide. J. Clean. Prod. 113, 910-918 (2016).
- [14] X.L. Wu, S.K. Wu, W.Q. Qin, X.H. Ma, Y.J. Niu, S.S. Lai, C.R. Yang, J. Feng, L.Y. Ren, Reductive leaching of gallium from zinc residue. Hydrometallurgy 113, 195-199 (2012).
- [15] C. Zhang, X.B. Min, L.Y. Chai, J.Q. Zhang, M. Wang, Mechanical Activation-Assisted Reductive Leaching of Cadmium from Zinc Neutral Leaching Residue Using Sulfur Dioxide. JOM 67, 3010-3021 (2015).
- [16] T.H. Kim, G. Senanayake, J.G. Kang, J.S. Sohn, K.I. Rhee, S.W. Lee, S.M. Shin, Reductive acid leaching of spent zinc-carbon batteries and oxidative precipitation of Mn-Zn ferrite nanoparticles. Hydrometallurgy 96, 154-158 (2009).
- [17] G. Senanayake, G.K. Das, A comparative study of leaching kinetics of limonitic laterite and synthetic iron oxides in sulfuric acid containing sulfur dioxide. Hydrometallurgy 72, 59-72 (2004).
- [18] K.B. Hallberg, B.M. Grail, C.A. Plessis, D.B. Johnson Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites. Miner. Eng. 24, 620-624 (2011).
- [19] G. Senanayake, A surface reaction kinetic model to compare the reductive leaching of iron from goethite, magnetite, and limonitic nickel laterite ores by acidic sulfur dioxide. Metall. Mater. Trans. B. 34, 735-738 (2003).
- [20] R. Kumar, S. Das, R.K. Ray, A.K. Biswas, Leaching of pure and cobalt bearing goethites in sulphurous acid: kinetics and mechanisms. Hydrometallurgy 32, 39-59 (1993).
- [21] J.S. Yuan, H.B. Yin, Z.Y. Ji, H.N. Deng, Effective Recycling Performance of Li+ Extraction from Spinel-Type LiMn2O4 with Persulfate. Ind. Eng. Chem. Res. 53, 9889-9896 (2014).
- [22] S.B. Kanungo, R.P. Das, Extraction of metals from manganese nodules of the Indian Ocean by leaching in aqueous solution of sulphur dioxid. Hydrometallurgy 20, 135-146 (1988).
- [23] K. Ryczaj, W. Riesenkampf, Kinetics of the dissolution of zinc-magnesium ferrites in sulphuric acid solutions related to zinc leach processes. Hydrometallurgy 11, 363-370 (1983).
- [24] S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, K.Y. Rajpure, J.H. Kim, A.V. Moholkar, C.H. Bhosale, Structural, dielectric and magnetic properties of Ni substituted zinc ferrite. J. Magn. Magn. Mater. 363, 114-120 (2014).
- [25] A.I. Borhan, V. Hulea, A.R. Iordan, M.N. Palamaru, Cr3+ and Al3+ co-substituted zinc ferrite: Structural analysis, magnetic and electrical properties. Polyhedron 70, 110-118 (2014).
- [26] M. Khairy, Polyaniline-Zn0.2Mn0.8Fe2O4 ferrite core-shell composite: Preparation, characterization and properties. J. Alloys. Compd. 608, 283-291 (2014).
- [27] M.A. Gabal, Y.M. Al Angari, Effect of diamagnetic substitution on the structural, magnetic and electrical properties of NiFe2O4. Mater. Chem. Phy. 115, 578-584 (2009).
Uwagi
This work was financially supported by the Natural Science Foundation of Hunan Province (2021JJ30081) and the Science and technology program of education department of Hunan province (20C0343).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb56b704-e7f0-4d73-8173-cbf34842fc0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.