PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Leaching of vanadium(V) from the mixture after potassium metavanadate synthesis based on KCl and spent vanadium catalyst

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of the leaching of vanadium(V) from the mixture after potassium metavanadate synthesis from KCl and spent vanadium catalyst in the presence of steam were presented. Spent vanadium catalyst was obtained from the waste storage of a chemical plant producing sulfuric acid(VI) by the contact method. The reaction mixture was leached using different solutions: 1 M Na2CO3, 20% CO(NH2)2, 15% NaOH, 15% KOH, 2 M H2SO4. The effect of time and temperature was studied. The results showed that for reaction mixture leached for 4 h at 303 K in the presence of 15% sodium hydroxide solution at a liquid:solid ratio of 10:1, the extent of leaching of vanadium(V) was 95.43%.
Rocznik
Strony
33--35
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Nicolaus Copernicus University, Faculty of Chemistry, 7 Gagarin Street, 87-100 Toruń, Poland
  • Nicolaus Copernicus University, Faculty of Chemistry, 7 Gagarin Street, 87-100 Toruń, Poland
  • Nicolaus Copernicus University, Faculty of Chemistry, 7 Gagarin Street, 87-100 Toruń, Poland
Bibliografia
  • 1. Grzesiak, P. (2002). Sulfuric acid - Methods and technologies of sulfuric acid production. Poznań, Poland, IOŚ.
  • 2. Grzesiak, P. & Grobela, M. (2002). Sulfuric acid - Effect of iron on some properties of the vanadium catalyst used for the oxidation of SO2. Poznań, Poland, IOŚ.
  • 3. Trypuć, M., Grzesiak, P., Mazurek, K. & Grobela, M. (2007). Complex development of hazardous waste vanadium catalyst used for the oxidation of SO2, Volume 1 - Characteristics of processes and catalysts for the production of sulfuric acid. Toruń - Poznań, Poland, IOŚ.
  • 4. Mazurek, K. (2012). Studies on the optimum conditions for leaching the spent vanadium catalyst from metallurgical plants with sodium hydroxide solutions. Przem. Chem. 91(2), 234-238.
  • 5. Mazurek, K., Białowicz, K. & Trypuć, M. (2010). Extraction of vanadium compounds from the used vanadium catalyst with the potassium hydroxide solution. Pol. J. Chem. Techn. 12(1), 23-28. DOI: 10.2478/v10026-010-0005-2.
  • 6. Mazurek, K. & Trypuć, M. (2009). Recovery of the components of the spent vanadium catalyst with sulfuric(VI) acid solutions. Przem. Chem. 88(11), 1248-1251.
  • 7. Mazurek, K. (2013). Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes. Hydrometallurgy 134-135, 26-31. DOI: 10.1016/j.hydromet.2013.01.011.
  • 8. Mazurek, K., Białowicz, K. & Trypuć, M. (2010). Recovery of vanadium, potassium and iron from a spent catalyst using urea solution. Hydrometallurgy 103(1-4), 19-24. DOI: 10.1016/j. hydromet.2010.02.008.
  • 9. Mazurek, K. (2012). Extraction of vanadium and potassium compounds from the spent vanadium catalyst from the metallurgical plant. Pol. J. Chem. Techn. 14(2), 49-53. DOI: 10.2478/ v10026-012-0070-9.
  • 10. Kiełkowska, U. (2009). Spent vanadium catalyst using to synthesis of potassium metavanadate in the presence of steam. Przem. Chem. 88/1, 70-72.
  • 11. Trypuć, M., Białowicz, K. & Mazurek, K. (2001). Investigations on the Synthesis of NaVO3 and Cl2 from NaCl and V2O5 in the Presence of Oxygen. Ind. Eng. Chem. Res. 40(3), 731-735. DOI: 10.1021/ie000687w.
  • 12. Trypuć, M., Torski, Z. & Białowicz, K. (2001). Investigations on the infl uence of silicon dioxide introduced as a neutral carrier on V2O5 conversion into KVO3. Pol. J. Chem. Tech. 3(1), 28-32.
  • 13. Trypuć, M., Białowicz, K. & Mazurek, K. (2004) Investigations on the synthesis of KVO3 and Cl2 from KCl and V2O5 in presence of oxygen. Chem. Eng. Science 59(6), 1241-1246. DOI: 10.1016/j.ces.2003.12.017.
  • 14. Trypuć, M., Torski, Z. & Kiełkowska U. (2001) Experimental determination of the optimum conditions of KVO3 synthesis based on KCl and V2O5 in the presence of steam. Ind. Eng. Chem. Res. 40(4), 1022-1025. DOI: 10.1021/ie000588i.
  • 15. Brouwer, P. (2006) Theory of XRF. Almelo, Netherlands: PANalytical B.V.
  • 16. Hermanowicz, W. (1999). Physico-chemical investigation of water and wastes. Warsaw, Poland, Arkady.
  • 17. Kiełkowska, U., Białowicz, K., Trypuć, M., Mazurek, K. & Grzesiak, P. (2008) Extraction of vanadium compounds from spent vanadium catalyst using NaOH solution. Sulfuric Acid - New Opportunities, 311-317. Poznań, Poland: IOŚ. ISBN 978-89867-30-8.
  • 18. Sánchez-Viñas, M., Bagur, G.M., Gázquez, D., Camino, M. & Romero, R. (1999). Determination of tin, vanadium, iron, and molybdenum in various matrices by atomic absorption spectrometry using a simultaneous liquid-liquid extraction procedure. J. Anal. Toxicol. 23(2), 108-112. DOI:10.1093/ jat/23.2.108.
  • 19. Fernandes, K.G., Nogueira, A.R.A., Gomes Neto, J.A. & Nóbrega, J.A. (2007). Determination of vanadium in human hair slurries by electrothermal atomic absorption spectrometry. Talanta 71(3), 1118-1123. DOI: 10.1016/j.talanta.2006.06.008.
  • 20. Skoog, D.A., Holler, J.F. &, Nieman T.A. (1998) Principles of instrumental analysis (5th Ed.) Philadelphia, USA, Saunders
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb4bcfd5-a5ce-400c-8142-59e492c1ddf4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.