PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the Chemical Composition, TG – DTA and Tensile Strength Tests of Commercial Gypsum Kinds for Foundry Sandmixes Application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the preliminary results of research on determining the possibilities of using available on the market commercial gypsum kinds as a binder for foundry moulding and core sandmixes. Construction gypsum and plaster gypsum, finishing coat and jewelry casting gypsum were tested. Elemental composition of gypsum kinds were carried out using a scanning electron microscope (SEM) with EDS/EDX probe, their crystal structure and phase composition was determined by analyzing the results of X-ray diffraction measurements (XRD) and thermogravimetric studies (TG-DTA). Evaluation of the mechanical properties of selected materials was carried out at the tensile strength test of the dog-bone samples after initial hardening of gypsum mortar at 25°C for 5 h and drying at 110°C for 24 hours. The impact of the properties of the used commercial gypsum kinds on the possibility of their use as a valuable binders in the manufacture of the foundry sandmixes for moulds and cores was evaluated. Construction gypsum and finishing coat have the highest tensile strength. Plaster gypsum and finishing coat have the longest setting time. In all tested types of gypsum, the initial water loss during heating occurs at a temperature of about 200°C. The lowest valuable properties as a binder for sand moulding mixtures has jewelry casting gypsum mass.
Rocznik
Strony
59--64
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Wroclaw University of Technology, Department of Foundry Engineering, Plastics and Automation, Wrocław, Poland
  • Wroclaw University of Technology, Department of Foundry Engineering, Plastics and Automation, Wrocław, Poland
autor
  • Wroclaw University of Technology, Department of Foundry Engineering, Plastics and Automation, Wrocław, Poland
autor
  • Wroclaw University of Technology, Department of Foundry Engineering, Plastics and Automation, Wrocław, Poland
autor
  • Wroclaw University of Technology, Department of Foundry Engineering, Plastics and Automation, Wrocław, Poland
Bibliografia
  • [1] Borkowska, M., Smulikowski, K. (1973). Rock forming minerals. Warszawa: Wydawnictwa Geologiczne. (in Polish).
  • [2] Akerman, K. (1964). Gypsum and anhydrite. Warszawa: PWN. (in Polish).
  • [3] Sayonara, M., Pinheiro, M. & Camarini G. (2015). Characteristics of Gypsum Recycling in Different Cycles. International Journal of Engineering and Technology. 15(7), 215-218. DOI: 10,7763/IJET.2015.V7.794.
  • [4] Luk, W.K. & Darvell, B.W. (2003). Effect of burnout temperature on strength of gypsum-bonded investments. Dental materials. 3(19), 552-557.
  • [5] Lou, W., Guan, B. & Wu, Z. (2011). Dehydration behavior of FGD gypsum by simoltaneous TG and DSC analysis. J Therm Anal Calorim. 11(104), 661-669. DOI 10.1007/ s10973-010-1100-6.
  • [6] Fukami, T., Tahara, S., Nakasone, K. & Yasuda, C. (2015). Synthesis, Crystal Structure, and Thermal Properties of CaSO4x2H2O Single Crystals. International Journal of Chemistry. 15(2), 12-20.
  • [7] Dziuba, M. & Cholewa, M. (2006). Ceramic core of open cellular skeletal cast. Archives of Foundry Engineering. 6(22), 170-176.
  • [8] Pawlak, M. (2010). The influence of composition of gypsum plaster on its technological properties. Archives of Foundry Engineering. 10(4), 55-60.
  • [9] Pawlak, M. (2010). The influence of the conditions of gypsum plaster preparation on its technological properties. Archives of Foundry Engineering. 10(2), 95-98.
  • [10] Doroshenko, V. (2018). Foundry publication as an environment for nature-like technologies. Customs products. 2(91), 23-28. (in Russian).
  • [11] Bilici, I. (2018). Alternative Evaluation of Synthetic Gypsum with Waste Polyethylene. Transactions on Science and Technology. 5(4), 239-244.
  • [12] Regulska, K. & Repelewicz, A. (2019). Properties of gypsum composites with sawdust. E3S Web of Conferences. 97(02037), 1-5. DOI:10,1051/e3sconf/20199702037.
  • [13] Chew, C.L., Land, M.F., Thomas, C.C. & Norman, R.D. (1999). Investment strength as a function of time and temperaturę. J. Dent Res. 99(26), 297-302.
  • [14] Takanori, F., Shuta, T., Keiko, N. & Chitoshi, Y. (2015). Synthesis, Crystal Structure, and Thermal Properties of CaSO4x2H2O Single Crystals. International Journal of Chemistry. 15(2), 12-20.
  • [15] Jones, D.W. (1967) Thermal analysis and stability of refractory investments. Journal of Prosthetic Dentisty. 67(18), 234-241.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb49202a-2afd-4a34-87e9-46af7cb78f47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.