PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimising the management of mining waste by means of Sentinel-2 imagery: a case study in the Joda West Iron and Manganese Mine (India)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A smart economy minimizes the production of waste from mining activities and reuses waste as a potential resource, with the goal of moving towards a near-zero waste society. This paper presents integrated multidisciplinary methodology in order to optimise the management of mining waste. The test site is the FeeMn mine in Odisha (India). The mining waste present in the mine has been collected and afterwards X-Ray Powder Diffraction, X-Ray Fluorescence and spectral signatures analysis have been performed for mineralogical, chemical and spectral characterization of the materials. Finally, the classification and mapping of the characterized mining waste was carried out by Sentinel-2A image.
Rocznik
Strony
22--32
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
  • Institute of Environmental Geology and Geoengineering, Italian National Research Council, Monterotondo, Rome, Italy
  • Institute of Environmental Geology and Geoengineering, Italian National Research Council, Monterotondo, Rome, Italy
  • Institute of Environmental Geology and Geoengineering, Italian National Research Council, Monterotondo, Rome, Italy
  • Institute of Atmospheric Pollution Research, Italian National Research Council, Monterotondo, Rome, Italy
  • Institute of Environmental Geology and Geoengineering, Italian National Research Council, Monterotondo, Rome, Italy
  • Water Research Institute, Italian National Research Council, Monterotondo, Rome, Italy
  • Institute of Environmental Geology and Geoengineering, Italian National Research Council, Monterotondo, Rome, Italy
Bibliografia
  • [1] Lottermoser BG. In: Mine wastes: Characterization, treatment and environmental impact. 3rd ed. Berlin Heidelberg: Springer-Verlag; 2010.
  • [2] Jamieson HE. Geochemistry and mineralogy of solid mine waste: Essential knowledge for predicting environmental impact. Elements 2011;7(6):381-6.
  • [3] Eurostat European Commission. Energy, transport and environment indicators, Eurostat Pocketbooks. Luxembourg: European Union; 2009.
  • [4] Hudson-Edwards KA, Jamieson HE, Lottermoser BG. Mine wastes: Past, present, future. Elements 2011;7(6):375-80.
  • [5] Palmer MA, Bernhardt ES, Schlesinger WH, Eshleman KN, Foufoula-Georgiou E, Hendryx MS, et al. Mountain top mining consequences. Science 2010;327(5962):148-9.
  • [6] Rao SR. Resource recovery and recycling from metallurgical wastes. Amsterdam: Elsevier; 2006.
  • [7] Ministry of Mines. Annual report 2017-2018, government of India, shastri bhawan, dr. Rajendra prasad road, New Delhi- 110001. Available at: https://mines.gov.in/writereaddata/UploadFile/Mines_AR_2017-18_English.pdf; 2017-2018.
  • [8] Lottermoser BG. Recycling, reuse and rehabilitation of mine wastes. Elements 2011;7(6):405-10.
  • [9] Yamaguchi T, Nagano H, Murai R, Sugimori H, Sekiguchi C, Sumi I. Development of Mn recovery process from waste dry cell batteries. J Mater Cycles Waste Manag 2018;20(4): 1909-17.
  • [10] European Commission. Report on critical raw materials and the circular economy, Vol. 1. Brussels: European Union; 2018.
  • [11] Scoble M, Klein B, Scott Dunbar W. Mining waste: Transforming mining systems for waste management. Int J Min Reclamat Environ 2003;17(2):123-35.
  • [12] Asadzadeh S, de Souza Filho CR. A review on spectral processing methods for geological remote sensing. International J Appl Earth Obs Geoinf 2016;47:69-90.
  • [13] Van der Meer FD, van der Werff HMA, van Ruitenbeek F-JA, Hecker CA, Bakker WH, Noomen MF, et al. Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation 2012;14:112-28.
  • [14] Berger M, Moreno J, Johannessen JA, Levelt PF, Hanssen RF. ESA's sentinel missions in support of Earth system science. Remote Sen Environ 2012;120:84-90.
  • [15] Van der Werff HMA, van der Meer FD. Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing. Remote Sens 2016;11:883-99.
  • [16] Mustard JF, Sunshine JM. Spectral analysis for earth science investigation: Investigations using remote sensing data. Remote Sens Earth Sci: Manual Remote Sens 1999;3: 251-307.
  • [17] Van der Meer FD, van der Werff HMA, van Ruitenbeek F-JA. Potential of ESA's Sentinel-2 for geological applications. Remote Sens Environ 2014;148:124-33.
  • [18] Zabcic N, Rivard B, Ong C, Mueller A. Using airborne hyperspectral data to characterize the surface pH and mineralogy of pyrite mine tailings. Int J Appl Earth Obs Geoinf 2014;32:152-62.
  • [19] Mishra P, Mishra SK, Singh PP, Mohapatra BK. Reworked manganese ore bodies in Bonai-Keonjhar belt, Singhbhum Craton, India: Petrology and genetic study. Ore Geol Rev 2016;78:361-70.
  • [20] Lucas-Tooth HJ, Price BJ. A mathematical method for the investigation of inter-element effects in X-ray fluorescent analyses. Metallurgia 1961;64:149-52.
  • [21] Mielke C, Boesche N, Rogass C, Kaufmann H, Gauert C, de Wit M. Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern push-broom missions: hyperion/OLI and EnMAP/sentinel-2. Remote Sens 2014; 6(8):6790-816.
  • [22] Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, et al. The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 1933;44(2-3): 145-63.
  • [23] Van der Meer FD, Vazquez-Torres M, Van Dijk PM. Spectral characterization of ophiolite lithologies in the Troodos Ophiolite complex of Cyprus and its potential in prospecting for massive sulphide deposits. Int J Remote Sens 1997;18(6): 1245-57.
  • [24] D'Odorico P, Gonsamo A, Damm A, Schaepman ME. Experimental evaluation of Sentinel- 2 spectral response functions for NDVI time-series continuity. IEEE Trans Geosci Rem Sens 2013;51(3):1336-48.
  • [25] Frampton WJ, Dash J, Watmough G, Milton EJ. Evaluating the capabilities of Sentinel- 2 for quantitative estimation of biophysical variables in vegetation. ISPRS J Photogrammetry Remote Sens 2013;82:83-92.
  • [26] Jönsson P, Cai Z, Melaas E, Friedl MA, Eklundh L. A method for robust estimation of vegetation seasonality from Landsat and Sentinel- 2 time series data. Remote Sens 2018;10:635-48.
  • [27] Defries RS, Townshend JRG. NDVI- derived land cover classifications at a global scale. International Journal of Remote Sens 1994;15(17):3567-86.
  • [28] Mandanici E, Bitelli G. Preliminary comparison of Sentinel- 2 and Landsat 8 imagery for a combine use. Remote Sens 2016; 8:1014-24.
  • [29] Sant’ana Filho JN, Da Silva SN, Cordeiro Silva G, Castro Mendes J, Fiorotti Peixoto RA. Technical and environmental feasibility of interlocking concrete pavers with iron ore tailings from tailings dams. J Mater Civ Eng 2017;29(9):395-412.
  • [30] Yellishetty M, Karpe V, Reddy EH, Subhash KN, Ranjith PG. Reuse of iron ore mineral wastes in civil engineering constructions: A case study. Resour Conserv Recycl 2008;52: 1283-9.
  • [31] Ismail ZZ, Al-Hashmi EA. Reuse of waste iron as a partial replacement of sand in concrete. Waste Manag 2007;28: 2048-53.
  • [32] Antelo J, Avena M, Fiol S, López R, Arce F. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethiteewater interface. J Colloid Interface Sci 2005; 285(2):476-86.
  • [33] Cundy AB, Hopkinson L, Whitby RL. Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci Tot Environ 2008;400(1-3):42-51.
  • [34] Zhang M, Dai M, Xia L, Song S. of arsenic adsorption on goethite and amorphous ferric oxyhydroxide in water. Water Air Soil Pollut 2017;228(11):427.
  • [35] Clark RN. Spettroscopy of Rocks and Minerals, snd principles of spectroscopy. In: Rencz AN, editor. Remote sensing for the earth sciences: Manual of remote sensing. 3rd ed. John Wiley & Sons; 1999.
  • [36] Harris JR, McGregor R, Budkewitsch P. Geological analysis of hyperspectral data over southwest baffin island: Methods for producing spectral maps that relate to variations in surface lithologies. Can J Rem Sens 2010;36(4): 412-35.
  • [37] Nair AM, Mathew G. Effect of bulk chemistry in the spectra variability of igneous rocks in VIS-NIR region: Implications to remote compositional mapping. Int J Appl Earth Obs Geoinfor 2014;30:227-37.
  • [38] Suman Babu P, Majumdar TJ, Bhattacharya AK. Study of spectral signatures for exploration of Bauxite ore deposits in Panchpatmali, India. Geocarto Int 2015;30(5):545-59.
  • [39] Legendre P, Legendre L. In: Numerical ecology. 3rd ed. Amsterdam: Elsevier; 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb4874aa-c41a-4e0c-948b-99ccf6218663
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.