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Abstract

A smart economy minimizes the production of waste from mining activities and reuses waste as a potential resource,
with the goal of moving towards a near-zero waste society. This paper presents integrated multidisciplinary method-
ology in order to optimise the management of mining waste. The test site is the FeeMn mine in Odisha (India). The
mining waste present in the mine has been collected and afterwards X-Ray Powder Diffraction, X-Ray Fluorescence and
spectral signatures analysis have been performed for mineralogical, chemical and spectral characterization of the ma-
terials. Finally, the classification and mapping of the characterized mining waste was carried out by Sentinel-2A image.
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1. Introduction

M ining and mineral processing wastes are
one of the largest chronic waste concerns in

the world. Mine wastes are defined as “those
waste products originating, accumulating and
present at mine sites, which are unwanted and
have no current economic value” [1]. The amount
of waste produced in mountain top mining envi-
ronments is staggering. Jamieson [2] reported that
North America produces more than 10 times as
much solid mine waste as municipal solid waste
per capita. According to Eurostat estimations [3],
mining and quarrying wastes accounted for more
than 720 million tons in 2010, corresponding to
28% of the total waste production in Europe (27
countries).
A number of environmental problems are asso-

ciated with the disposal of this waste, including
ecological losses, downstream contamination and

pronounced landscape transformation (e.g., stock-
piled waste rock and tailings, subsidence basins,
open pits, and removal of overburden rock and
topsoil) [4,5]. Due to the continuous need of mining
activities to collect raw materials (RMs) to sustain
our economy, the deposits of wastes may become
orebodies through appropriate innovative manage-
ment strategies with the aim of minimizing envi-
ronmental impact and protecting human health.
In this context, mining waste from Fe and Mn ore

deposits, which are considered worthless, placed
into overburden dumps and are not of interest for
the steel industry, due to their low iron content and
the need of prior ore dressing, can find a valuable
use in many applications other than the mining in-
dustry [6]. In 2016e2017, Indian production of iron
ore (4th in the world rankings) consisting of lumps,
fines and concentrates was 192 million tons, an in-
crease of 22% compared to the previous year, with
52% of the production in the state of Odisha [7]. The
amount of waste produced from this kind of mining
activity is equal to millions of tons per year.
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In recent years due to difficulties related to
accessing RMs, resource depletion, increases in
metal prices and environmental pressures, the re-
covery of critical raw materials (CRMs) from low-
grade ore, steel works by-products and industrial
waste have become an important issue and a global
challenge for present and future generations [8,9].
Although all RMs are important, some of them are
of more concern than others in terms of secure and
sustainable supply. In 2018 the European Union
published an updated list of CRMs for the European
Economy [10].
Considering the large amount of mining waste

produced worldwide over the years, it is necessary
to have accurate information about waste, i.e. exact
positioning in the mining area as well as minerals to
still be exploited. Additionally, at the time of open-
ing mining activity, the waste chemical and miner-
alogical composition was ignored or this material
was considered below the cut-off grade. Nowadays,
advances in innovative technologies and markets
mean that deposits of past wastes can be used as
sources of RMs [11].
To this end, mining waste mapping is a very

useful tool for the management of the mine and
remote sensing is a valuable, fast, low cost, simple
and non-environmentally invasive technique for
optimising in situ sampling strategies, for charac-
terizing exploitable resources, for managing and
planning wastes (rich in Fe and Mn) as mineral re-
sources for future use.
In the last decade, the remote sensing technique,

applied to multi- and hyper-spectral images, has
been used as an effective tool for the mapping of
different lithology, ore deposits and mineral re-
sources in several papers [12,13]. Recently, the
possibility of open accessing Sentinel images [14]
makes the use of remote sensing even more inter-
esting for geological applications [15].
This technique is based on the ability of remote

sensors to collect the sun's electromagnetic radiation
which is reflected by earth surfaces. The electro-
magnetic radiation interacts with materials and ac-
quires a characteristic spectral behaviour that can be
used to distinguish different materials and to
determine their composition.
Geologic remote sensing is based exactly on the

possibility to extract quantitative and/or qualitative
information on mineral associations from remotely
sensed reflectance (or emittance) spectra derived by
multispectral images [16].
Many studies have investigated mining waste

from airborne, satellite and field spectral data in

order to map the spatial distribution of minerals in
tailings [17,18].
Generally, a major obstacle is represented by the

difficulty of having available, at the same time, sat-
ellite images, mineralogical data and geochemical
data concerning surface outcropping materials. In
situ sampling provides, in fact, an important means
to support the validation of remote observations and
allows the widening of the information based on
a single field measurement to a larger area (i.e.
remotely imagery), as well as to build the spectral
signature database of the mining waste for multi-
temporal monitoring of areas containing mining
waste.
In this paper, we propose integrated multidisci-

plinary methodology to map mine wastes in order to
manage and convert them in new valuable and
exploitable products. In order to improve current
mining waste disposal, we have developed an
approach that enables the collection of useful data
(chemical, physical and spectral characteristics,
location of waste in the mining area), making them
into smart data (mapping, minerals to be exploited
still, planning of fresh wastes) by means of detailed
analyses. As a result, this optimized management
valorises mining waste as they are considered as
a source of raw materials that new technologies and
markets can exploit.
The methodology, tested on wastes produced in

the Joda West Iron and Manganese Mine (India),
can be summarized by the following steps:

� in situ waste sampling;
� mineralogical and chemical characterization of
mining waste by using X-Ray Powder Diffraction
(XRPD) and X-Ray Fluorescence (XRF);

� spectral signatures measurements and analysis
of mining waste;

� multispectral satellite Sentinel-2A image
classification.

This approach can be considered as the first step
to promoting the application of economically
feasible, socially acceptable, eco-friendly and inno-
vative integrated technologies for the efficient
management and sustainable exploitation of mining
waste towards a near-zero waste model.

2. Materials and methods

2.1. Study area

Joda West Iron and Manganese Mine (JWIMM) is
an opencast mine situated in the North East part of
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Keonjhar district of Odisha state (India) (Fig. 1) and
it has been run by TATA Steel since 1933. The
climate is tropical: summer (from April to June) is
hot and humid with temperatures hovering around
45 �C and winter is severe (temperature drops below
5 �C). August and September are the wettest months
and the annual rainfall varies between 1170mm and
1500mm. The study area is characterized by the
presence of small hills covered by tropical dry de-
ciduous forests on the higher slopes and shrubs and
bushes on the lower level. In geological terms,
JWIMM lies in the western portion of the Singhb-
hum-Odisha craton [19]. The iron ores belong to the
Iron Ore Group (IOG) and manganese ore deposits
are confined to Shale Formation of the Precambrian
IOG. In particular, manganese ore bodies are asso-
ciated with shales, laterite, chert and, quartzite of
the IOG and are distributed within the horseshoe
shaped synclinorium, plunging towards NNE over
folded towards SW. The shale formation occurs as
a core of the synclinorium along Jamda-Koira valley
overlying the Banded Iron Formation (BIF e an
important volcano sedimentary rock formation of
the IOG).

2.2. Sample collection

During the in situ sampling campaign carried out
in the second half of November 2017, in different
areas of the JWIMM, 37 different mining waste

samples (rock as well as debris) were collected
(Fig. 2). For each site GPS coordinates, pictures and
a brief description of the sampling site were stored
and summarized in datasheets.
Whereas, the sub-sampling method (as coning

and quartering) was applied to the mining waste
samples with the purpose of obtaining a represen-
tative sample from a larger one (sampling area). Part
of this material was used for spectral measurement
and part was grounded for mineralogical analyses.
In particular, the subsampled wastes were passed
through a 2-mm sieve and grounded in a vibratory
grinder (Willy Bleuler Apparatebau Zollikon-
Schweiz) for sample characterization in a laboratory.

2.3. Sample characterization

2.3.1. X-Ray Powder Diffraction analysis
XRPD analysis was carried out with a fully auto-

mated Bruker AXS D8 Advance diffractometer
operating in reflection mode with q-q geometry and
equipped with high-resolution energy dispersive
1-D Lynxeye XE detector, with an opening of 3� in
2q. The measurement parameters used were: CuKa,
40 kV, 30mA, 2.5� soller collimators, 0.6mm diver-
gence slit, anti-scatter screen, scan angle
(2q)¼ 0e70�; step width (2q)¼ 0.02�; counting time
0.3 s per step. The samples were micronized to
under 70 mm in size by a vibrating rotary cup mill at
900 rpm motor speed and a standard 100ml steel

Fig. 1. Study area and geological map of ore bodies in Bonai-Keonjhar belt, Singhbhum Craton, India. Reprinted from ‘Reworked manganese ore
bodies in Bonai-Keonjhar belt’, by [19].
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crews. The grinding containers incorporate an anvil
ring and puck to pulverize the sample by eccentric
vibratory action.
Diffraction data was elaborated with DIF-

FRAC.EVA software and the Crystallography Open
Database (COD). The identifiers of the COD can be
freely obtained (http://www.crystallography.net/
cod/) since COD is an open-access database.

2.3.2. X-Ray Fluorescence analysis
The chemical analyses were carried out by

SPECTRO XEPOS ED-XRF elemental analyser
optimized for heavy elements with Max power of
50W and Max voltage of 50 kV. The X-Ray EDS
fluorescence spectrometer is equipped with an X-

Ray tube with thick binary Pd/Co alloy anode with
air-cooling, an adaptive excitation system with
optimized filters HAPG (Highly Annealed Pyrolytic
Graphite) polarizer for improved sensitivity of ele-
ments in the range NaeCl and a bandpass filter for
improved performance for elements in the range
KeMn. The signal detection was carried by an SDD
with Peltier cooling with a large detector area (30
mm2) and active area of 20 mm2. Spectral resolution
(FWHM)� 130 eV for Mn Ka and input count rate
up to 1,000,000 counts per second. In the instrument,
there is a detector filter changer for active pile-up
reduction.
The calibration curves were constructed using

international standards and the common linear
model developed by Lukas-Tooth and Price [20].
The results were compared with those obtained
with the TurboQuant method (XRF Analyzer Pro
software) and the SPECTRO procedure calibration
model, a combination of the Fundamental
Parameter and Extended Compton scattering
model with a calibration of the mass attenuation
coefficient.
The choice of the best calibration curve for each

element was based on the best correspondences of
the analytical results with the Given Concentrations
of the international standards.

2.3.3. Spectral characterization
In the laboratory, for each waste sample collected

in the mine, the spectral signature was recorded
using a field hyperspectral spectrometer (FieldSpec
FR3 PRO, Analytical Spectral Devices- ASD,
Boulder, CO, USA) operating in the visible (VIS),
near infrared (NIR) and short wave infrared (SWIR)
spectral domains (350 and 2500 nm).
The laboratory spectral measurements were

collected using a sensor with field of view of 25�

(bare optic fiber probe). The probe was placed
approximately 10 cm above the target, nadir viewing

Fig. 2. In situ sampling campaign. From Google Earth.

Table 1. Wavelengths and bandwidths of Sentinel-2A.

Spatial
Resolution(m)

Band

Number

Central

Wavelength (nm)

Bandwidth

(nm)

10 2 496.6 98

3 560.0 45

4 664.5 38

8 835.1 145

20 5 703.9 19

6 740.2 18

7 782.5 28

8a 864.8 33

11 1613.7 143

12 2202.4 242
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over the sample, thus analysing (recovering) a sur-
face area of about 15 cm2; halogen light source
(ADS-Lowel Pro-Lamp) was placed approximately
35 cm from the sample (45�viewing). For each mea-
surement, an integration of 50 acquisitions was
selected. A white Spectralon® panel (regarded as
a Lambertian reflector) was used as a reference to
calculate the reflectance of the sample. For each
sample, more than four measurements were carried
out, rotating the sample by approximately 90� each
time to minimize the shadow effects; the reflectance
spectra were averaged in order to obtain a single
spectrum for each sample. With the aim of guar-
anteeing good quality analytical data and

eliminating problems of the drift of the sensitivity of
the instrument, for each sample the reference panel
was measured at the beginning and at the end of the
measurement session and the estimated error of
absolute reflectance was approximately 2%.
Furthermore, to use spectral measurement for
remote image interpretation, each spectrum was
resampled according to the Sentinel-2A spectral
band ranges (Table 1).

2.4. Processing of Sentinel-2 satellite image

The Sentinel missions are designed to provide
routine observations for operational Copernicus

Fig. 3. Hematite and Goethite in Joda West Mine samples.

Fig. 4. Lukas-Tooth and Price (LT) vs. SPECTRO procedure (TQ e TurboQuant method) calibration curves.

26 JOURNAL OF SUSTAINABLE MINING 2020;19:22e32

R
E
S
E
A
R
C
H

P
A
P
E
R

mailto:Image of Fig. 3|tif
mailto:Image of Fig. 4|tif


services and to provide data continuity of ERS,
ENVISAT and multispectral missions such as SPOT,
Landsat, Aster, etc.
The Sentinel-2A satellite carries a multispectral

instrument and has a sun-synchronous 786 km orbit
that allows the covering of all the land surfaces and
coastal waters between �56 and þ84� latitude with a
290 km swath width at a 10 day revisit time at the
equator. The mission is primarily designed for
global land coverage and associated applications in
change detection mapping. Nevertheless, Sentinel-2
multispectral images were utilized for geological
applications [17], in order to map the surface
mineralogy associated with hydrothermal alteration
systems [15,17] as well as the potential areas of acid
mine drainage (AMD) generation [21].
In order to map Fe and Mn mining waste,

a Sentinel-2A image was acquired of the mine area
on November 29, 2017 (the closest overpass to the
field sampling survey).
The sampling sites were recognized on the

georeferenced Sentinel-2A image and for each site
the corresponding spectral signature was extracted
by the image and coupled to the spectrum acquired
in the laboratory.

To process a multispectral Sentinel-2A image,
a Spectral Angle Mapper (SAM) supervised pro-
cedure was applied to this data set.
The chosen classifier assigns pixels to classes

based on spectral similarity by calculating the angle
between the spectra [22], it requires a very small
training set and is used by different authors to map
ophiolite lithologies [23], the mineralogy of pyrite
mine tailings [18], and metasedimentary rocks [7].
Furthermore, to distinguish vegetation from the

mining area the Normalized Difference Vegetation
Index (NDVI), which is generally used to monitor
the state of vegetation with remote sensors, was
applied [24e26]. This index is calculated considering
the spectral behaviour of vegetation in the visible
and near infrared wavelength ranges as shown in
Equation (1).

NDVI ¼ (NIR-RED) / (NIR þ RED) (1)

NDVI ranges from �1 to þ1: negative values
represent water; values from 0 to 0.3 correspond to
bare soil; low, positive values indicate bare soil with
vegetation; values higher than 0.35 correspond to
vegetation [27,28].

3. Results and discussion

3.1. Mineralogical and chemical characterization of
mining waste

The main mineralogical phases of mining waste
samples are: Hematite (a-Fe2O3), Goethite (a-
FeOOH), Muscovite (KAl2(AlSi3O10) (F,OH)2),

Table 2. X-Ray Fluorescence analysis partial results.

Min Max

Major elements in the samples
Fe (%) 4.94 49.53

Mn (%) 0.12 46.90

Al (%) 1.29 13.82

Si (%) 1.33 31.85

Fig. 5. Cluster analysis results on the percentage values of Fe and Mn and the spectral reflectance values of each sample. The boxes represent four
classes used as input to classify Sentinel-2A image.
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Kaolinite (Al2Si2O5(OH)), Quartz (SiO2) and Pyro-
lusite (MnO2). The main iron phases (Hematite and
Goethite) are present in variable percentages in the
samples with maximum values of 67.41% and
36.04% and minimum values of 4.26% and 2.41%,
respectively (Fig. 3). The main manganese phase
(Pyrolusite) is present in variable percentages in the
samples with a maximum value of 26.00% and
minimum value of 2.67%.
For some iron phases (Akaganeite (b-FeOOH),

Lepidocrocite (g-FeOOH), Feroxyhyte (d0-FeOOH),
and Ferrihydrite (Fe5HO8e4H2O)), it is not possible
to establish whether they are actually present in

a small percentage (1e2%) due to the noisy back-
ground of the diffraction spectra. Maghemite
(g-Fe2O3) and Magnetite (Fe3O4) have their main
peaks hidden by diffraction peaks of other phases,
so they have not been included in the semi-quan-
titative analysis.
Fig. 4 shows a comparison between the calibration

curves of some elements of particular interest con-
structed using the Lukas-Tooth and Price common
linear model and those obtained with the SPECTRO
procedure. Table 2 shows the minimum and
maximum values of the most abundant elements
present in the samples.

Fig. 6. Mining waste deposit map that shows the spatial distribution of the four mining waste classes (a) and the different percentage of minerals in
each class (b). The four classes have been overlaid on Sentinel-2A image in true colour (Red: band 4; Green: band 3; Blue: band 2; spatial resolution:
10 m).
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3.2. Fe and Mn waste map by means of Sentinel-2A

Considering the XRF and XRPD results, in order
to characterize mining waste by remotely image this
research was focused on elements and minerals

with a percentage higher than 5%: firstly, those with
a presence of Fe and Mn, and then also Si and Al.
In particular, iron wastes are broadly reused in

civil engineering constructions [29e31] and in water
treatment for Arsenic removal [32e34]. Addition-
ally, these samples are rich in manganese (20e50%)
and Mn recovery is interesting because this element
is included in the list of CRMs for the European
Economy [10].
Moreover, a number of studies have been con-

ducted on the use of satellite and airborne sensors
for Fe and Mn mineral mapping from being ‘spec-
trally active' [17,35e38]. In this paper, to identify
samples of mining waste with similar mineralogical,
chemical and spectral behaviour, a hierarchical
cluster analysis using the Euclidean distance and
the average linkage between groups criterion
(UPGMA) was performed [39]. The percentage
values of Fe and Mn, the reflectance values derived
by Sentinel-2A image and reflectance values
collected in the laboratory of each sample were used
as input data.
The result of the cluster analysis is shown in Fig. 5

by means of a dendrogram that highlighted
4 groups of samples. These groups were analysed by
the coupling of in situ data description (i.e. site
characteristics, X,Y coordinate by GPS and pictures)
and the results of mineralogical, chemical and
spectral characterization. Moreover, cluster analysis
results highlighted that all class samples were
collected in very morphologically and topographi-
cally similar mining areas (roadside with sparse
vegetation, open space, stocks, no longer exploited
mining area).
The Sentinel spectra of each detected group was

used as a training set to classify the Sentinel-2A
image.
In particular, the four classes identify four distinct

typologies of areas containing mining waste: Class
1 e waste dumped by the roadside with the pres-
ence of sparse vegetation; Class 2 e waste accu-
mulated in open space; Class 3 e waste deposits of
lower-grade ores; Class 4 e waste abandoned in a
closed mine.
The results of Spectral Angle Mapper (SAM)

classification were represented in a map of mining
waste deposits (Fig. 6a) that shows the spatial dis-
tribution of the four mining waste classes, thus
identifying waste deposit areas with different mean
percentages of Fe and Mn, and then also Si and Al
(Fig. 6b).
The accuracy of the classification was as follows:

user's accuracy¼ 94.81%; producer's accu-
racy¼ 95.23%; overall accuracy¼ 95.88%; k¼ 0.806.

Fig. 7. The NDVI output image: the presence of vegetation and mining
wastes dumped by the roadside is highlighted in orange. Asterisks
represent samples of Class 1 used as input to classify Sentinel-2.
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Moreover, the result of the NDVI computation
were merged with SAM classification results to
verify the presence of vegetation. In particular, the
NDVI output image (Fig. 7) highlights the presence
of vegetation in Class 1, indicating that these wastes
are exposed for a longer period of time than
compared to Class 2, which is characterized by the
steady accumulation of extractive wastes. Finally,
Class 3 is very rich in Fe and Mn, but these deposits
of wastes are not of interest for the steel industry
because they need of mineral preprocessing. Class 4
consists of waste deposits with lower Fe and Mn
content.
Given the importance of the possible reuse of

mining waste in large areas, the waste deposits map
(Fig. 6 a) represents a basic tool to detect waste de-
posits, which are homogeneous in terms of Fe and
Mn, as well as an instrument for optimising the
future planning and managing of the mining waste
deposit arrangement in Joda West mine areas.
In fact, these mining waste deposits can be

valorised and considered as new orebodies by
having their exact positioning and the minerals
contained to still be exploited. Furthermore, all
collected data can be used to unlock the potential
raw materials in further reuse and recycle processes
and to reduce the environmental impact of waste
products accumulated at mine sites.

4. Conclusions

A smart economy minimizes the production of
waste and promotes its reuse as a resource for a new
industrial process, which enables the movement
towards a near-zero waste society with reduced
environmental impacts and improved quality of life.
Nowadays, the recycling and reuse of mining

waste is very attractive when looking at reducing the
environmental impact of mining activities,
increasing protection for human health and finding
suitable solution with an economic value since cost-
benefit analysis is always the ultimate driver in
terms of the feasibility of a specific reuse
technology.
Multidisciplinary research on mine wastes focuses

on understanding their character, stability, impact,
remediation, and reuse. The importance of
continuing this approach in order to better under-
stand and sustainably manage the huge quantities of
historic, contemporary and future mine wastes, is
unquestionable, also when considering the trend to
exploit larger deposits of lower-grade ores.
The XRPD and XRF analysis highlighted the

presence of wastes rich in Fe and Mn that could be

reused for extracting exploitable RMs. For example,
the recovery of quartz sand for concrete production
and kaolin for industrial applications (automotive,
ceramic, agriculture); manganese in the amount of
20e50% is often measured in waste samples and
this makes these materials interesting for Mn
recovery.
Remote sensing techniques that have lower costs

than field methods for the characterization of
exploitable resources (such as iron and manganese
deposits) exposed on the Earth's surface, can be
used to rapidly map large areas. The ESA Coper-
nicus Program provides free multispectral images
and launched the Sentinel-2A satellite on June 23,
2015, therefore, this paper present one of the first
study in which the image is used to characterize and
to map the mining waste combining mineralogical
and spectral characteristics into an Fe and Mn de-
posit map.
The map obtained (Fig. 7) enables not only the

recognition of the areas with the highest concen-
tration of reusable wastes but also can help to effi-
ciently sort the waste that will be produced, storing
it in homogeneous areas.
Moreover, the datasheets of samples containing

all the information from in situ sampling and labo-
ratory analysis could be used for developing a pre-
liminary database of mining waste. This database
could be an important step to organizing the
multidisciplinary information regarding mine
wastes and it could be a relevant tool for optimising
the waste management as well as for further
research in the field of mining waste reusing and
recycling. It will also be the key to knowing the
chemical, mineralogical and spectral characteristics
of the mine wastes and could be updated and
implemented with results obtained by further
innovative analysis.
Finally, the possibility of providing, at the same

time, laboratory spectral signatures associated
with mineralogical and geochemical data con-
cerning surface-outcropping materials enabled
the creation of a spectral library of mining waste,
which could be used in further satellite image
classifications.
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