PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Establishment of local geodetic networks based on least-squares adjustments of GNSS baseline vectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Slope deformations, i.e., all types of landslides of rock masses (flow, creep, fall down, etc.), caused by gravitational forces, are the most widespread implementation of geological hazards and a negative geomorphological phenomenon that threatens the security of the population, destroy all utility values of the affected regions, negatively affects the environment, and cause considerable economic damage. Nowadays, the Global Navigation Satellite Systems (GNSS) provide accurate data for precise observations around the world due to the growing number of satellites from multiple operators, as well as more powerful and advanced technologies and the implementation of mathematical and physical models more accurately describing systematic errors that degrade GNSS observations such as ionospheric, tropospheric, and relativistic effects or multipath. The correct combination of measurement methods provides even more precise, i.e., better measurement results or estimates of unknown parameters. The combination of measurement procedures and their significant evaluations represent the essential attribute of deformation monitoring of landslides concerning the protection of the environment and the population’s safety in the interest areas for the sustainable development of human society. This article presents the establishment and use of a local geodetic network in particular local space for various needs. Depending upon the specific conditions, it is possible to use GNSS technology to obtain accurate observations and achieve the results applicable to the deformation survey for subsequent processing of the adjustment procedure.
Rocznik
Strony
art. no. e15, 2022
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
  • Technical University of Kosice, Kosice, Slovakia
  • Technical University of Kosice, Kosice, Slovakia
  • Technical University of Kosice, Kosice, Slovakia
  • VSB – Technical University of Ostrava, Ostrava, Czech Republic
  • VSB – Technical University of Ostrava, Ostrava, Czech Republic
autor
  • University of Economics in Bratislava, Bratislava, Slovakia
autor
  • University of Economics in Bratislava, Bratislava, Slovakia
Bibliografia
  • [1] Bakon, M., Oliveira, I., Perissin, D. et al. (2017). A Data Mining Approach for Multivariate Outlier Detection in Postprocessing of Multitemporal InSAR Results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10(6), 2791–2798. DOI: 10.1109/JSTARS.2017.2686646.
  • [2] Banas, M., and Ligas, M. (2014). Empirical tests of performance of some M-estimators. Geod. Cartogr., 63(2), 127–146. DOI: 10.2478/geocart-2014-0010.
  • [3] Baum, R., and Godt, J. (2010). Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides, 7(3), 259–272. DOI: 10.1007/s10346-009-0177-0.
  • [4] Capparelli, G., and Tiranti, D. (2010). Application of the MoniFLaIR early warning system for rainfall induced landslides in Piedmont region (Italy). Landslides, 7(4), 401–410. DOI: 10.1007/s10346- 009-0189-9.
  • [5] Caspary, W.F. (2000). Concepts of network and deformation analysis. The University of New South Wales, Kensington (Australia).
  • [6] Decree of GCCA SR no. 300/2009 Coll. implementing the Act of the National Council of the Slovak Republic no. 215/1995 Coll. on geodesy and cartography as amended.
  • [7] Droscak, B. (2018). Coordinate system of the unified trigonometric cadastral network and its relation to the European Terrestrial Reference System 1989. Technical report. Bratislava, Geodetic and Cartographic Institute Bratislava. Retrieved January 10, 2022, from https://www.geoportal.sk/files/ gz/etrs89_s-jtsk_tech_sprava_2014_ver1_0.pdf.
  • [8] Drabikova, E. (2016). Project Management from Benefits Perspective. MMK 2016, Magnanimitas, Hradec Králové, 25–30. DOI: https://doi.org/10.17973/MMSJ.2018_03_201733.
  • [9] Fukushima, T. (1999). Fast Transform from geocentric to geodetic coordinates. J. Geod., 73(11), 603–610. DOI: 10.1007/s001900050271.
  • [10] Gasincova, S., and Gasinec, J. (2010). Adjustment of positional geodetic networks by unconventional estimations. Acta Montan. Slovaca, 15(1), 71–85. ISSN 1335-1788.
  • [11] Gasinec, J., and Gasincova, S. (2016). Landslide Deformation Analysis Based on Robust M-estimations. J. of the Polish Mineral Eng. Soc., 17(1), 171–176.
  • [12] Gasinec, J., Gasincova, S., Stankova, H. et al. (2019). Observation of horizontal displacements on water structures via GNSS. In Satellite methods in geodesy and real estate of cadaster. Brno: ECON publishing, s.r.o., p. 85–94, ISBN 978-80-86433-72-1.
  • [13] Ge, L., Chang, H.C., and Rizos, C. (2007). Mine subsidence monitoring using multi-source satellite SAR images. Photogramm. Eng. Remote Sens., 73(3), 259–266. DOI: 10.14358/PERS.73.3.259.
  • [14] Gergelova, M., Kuzevicova, Z., Kuzevic, S. et al. (2012). GIS as a supporting tool in the process of hydrodynamic modeling on a selected part of a watercourse. Acta Hydro. Slovaca, 13(2), 394–403. ISSN 1335-6291.
  • [15] Grecea, C., Lenciu, I., Dimen, L. et al. (2012). Impact of surveying engineering on the environmental protection problems. J. Environ. Prot. Ecol., 13(1), 352–360. ISSN 1311-5065.
  • [16] Hampel, F. (1980). Robuste Schätzungen: Ein anwendungsorientierter Überblick. Biom. J., 22(1), 3–21. DOI: 10.1002/bimj.4710220102.
  • [17] Hefty, J., and Frohmann, E. (1998). Non-linear 3D transformations and its application to coordinate transfer between S-JTSK and ETRS 89. Geod.Cartogr. Rev., 44(6), 121-126. ISSN 1805-7446.
  • [18] Hefty, J., and Husar, L. (2007). Sattelite geodesy – Global positioning system. STU Bratislava.
  • [19] Hekimoglu, S. (2005). Do robust methods identify outliers more reliably than conventional tests for outliers? ZFV – Zeitschrift fur Geodasie, Geoinformation und Landmanagement, 130(3),174-180.
  • [20] Hoffmann-Wellenhof, B., Lichtenegger, H. and Wasle, E. (2008). GNSS – Global Navigation Satellite Systems. Wien: Springer-Verlag. DOI: 10.1007/978-3-211-73017-1.
  • [21] Hong, M., Kim, J. and Jeong, S. (2018). Rainfall intensity-duration thresholds for landslide prediction in South Korea by considering the effects of antecedent rainfall. Landslides, 15(3), 523–534. DOI: 10.1007/s10346-017-0892-x.
  • [22] Huber, P.J. (1964). Robust estimation of a location parameter. Ann. Math. Stat., 35(1), 73–101. DOI: 10.1214/aoms/1177703732.
  • [23] Chae, B., Park, H., Catani, F. et al. (2017). Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosci. J., 21(6), 1033–1070. DOI: 10.1007/s12303-017-0034-4.
  • [24] Chan, F., Chuah, C., Ziegler, A. et al. (2018). Towards resilient flood risk management for Asian coastal cities: Lessons learned from Hong Kong and Singapore. J. Clean. Prod., 187, 576–589. DOI: 10.1016/j.jclepro.2018.03.217.
  • [25] ITS (International Technical Standard). (2007). Geographic information. Spatial referencing by coordinates. STN EN ISO 19111, Slovak office of standards, metrology and testing, Bratislava.
  • [26] Jadviscok, P., Ovesna, G., and Konecny, M. (2016). Multipath and its manifestations in the real environment of geodetic practice. Geod. Cartogr., 42(2), 47–52. DOI: 10.3846/20296991.2016.1198573.
  • [27] Jager, R., Muller, T., Saler, H. et al. (2005). Classical and robust adjustment methods. Wichmann: Heidelberg.
  • [28] Jing, Z., Wang, J., Zhu, Y. et al. (2018). Effects of land subsidence resulted from coal mining on soil nutrient distributions in a loess area of China. J. Clean. Prod., 177, 350–361. DOI: 10.1016/ j.jclepro.2017.12.191.
  • [29] Kadaj, R. (2016). The combined geodetic network adjusted on the reference ellipsoid – a comparison of three functional models for GNSS observations. Geod.Cartogr., 65(2), 229–257. DOI: 10.1515/ geocart-2016-0013.
  • [30] Kolcun, S., and Sütti, J. (2000). Deformation analysis of the area around Jaslovské Bohunice. Acta Montan. Slovaca, 5(1), 71–76. ISSN 1335-1788.
  • [31] Krarup, T., and Kubik, K. (1983). The Danish method. Experiance and Philosophy. Deutsche Geodätische Kommission, Seminar on Mathematical Models of Geodetic Photogrammetric Point Determination with Regard to Outliers and Systematic Errors, Germany, 131–134.
  • [32] Kukucka, P. (2013). The monitoring of landslide area. Miskolc: Bíbor Publisher.
  • [33] Labant, S., Weiss, G., and Kukucka, P. (2011). Robust adjustment of a geodetic network measured by satellite technology in the Dargovských Hrdinov suburb. Acta Mont. Slovaca, 16 (3), 229–237. ISSN 1335-1788.
  • [34] Labant, S. (2013). Deformation analysis of stability area. Miskolc: Bíbor Publisher.
  • [35] Labant, S., Weiss, G., Zuzik, J. et al. (2014). Graphical interpretation deformation analysis of stability area using of strain analysis. Acta Montan. Slovaca, 19(1), 31–40. ISSN 1335-1788.
  • [36] Labant, S., Bindzarova Gergelova, M., Kuzevicova, Z., et al. (2020). Utilization of Geodetic Methods Results in Small Open-Pit Mine Conditions: A Case Study from Slovakia. Minerals, 10(6), 489. DOI: 10.3390/min10060489.
  • [37] Leick, A. (2004). GPS Satellite Surveying. (3rd edition). Toronto: John Wiley & Sons.
  • [38] Ma, K., Liu, G., Guo, L. et al. (2020). Deformation and stability of a discontinuity-controlled rock slope at Dagangshan hydropower station using three-dimensional discontinuous deformation analysis. Int. J. Rock Mech. Min. Sci., 130, 104313. DOI: 10.1016/j.ijrmms.2020.104313.
  • [39] Manap, N., and Voulvoulis, N. (2016). Data analysis for environmental impact of dredging. J. Clean. Prod., 137, 394–404. DOI: 10.1016/j.jclepro.2016.07.109.
  • [40] Melicher, J., and Flassik, T. (1998). Coordinate Transfromation from the World Geodetic System 1984 into the Local Coordinate System by Non-Linearized Rotation Matrices. Geod. Cartogr. Rev., 44(2), 25–29. ISSN 1805-7446.
  • [41] Niemeier, W. (2002). Adjustment Calculation. Berlin: De Gruyter Verlag.
  • [42] Popa, A., and Palamariu, M. (2012). Displacement and deformation analysis for hydropower buildings. In SGEM – 12th International Multidisciplinary Scientific GeoConference and EXPO, Bulgaria, Varna, 723–730. ISSN 1314-2704.
  • [43] Pu, F., Ma, J., Zeng, D. et al. (2015). Early Warning of Abrupt Displacement Change at the Yemaomian Landslide of the Three Gorge Region, China. Nat. Hazards Rev., 16(4), 04015004. DOI: 10.1061/ (ASCE)NH.1527-6996.0000179.
  • [44] Qian, T., Wu, H., Zhao, G. et al. (2012). Deformation Monitoring and Environmental protection for Deep Foundation Pit Engineering. Appl. Mech. Mat., 204–208, 2970–2973. DOI: 10.4028/www.scientific. net/AMM.204-208.2970.
  • [45] Sabova, J., and Pukanska, K. (2007). Projekt der Deformationsuntersuchungen. Acta Montan. Slovaca, 12 (special 3), 516–519.
  • [46] Schonemann, E., Becker, M., and Springer, T. (2011). A new Approach for GNSS Analysis in a Multi-GNSS and Multi-Signal Environment. J. Geod. Sci., 1(3), 204–214. DOI: 10.2478/v10156-010-0023-2.
  • [47] Sokol, S., Bajtala, M., Jezko, J. et al. (2014). Testing the accuracy of determining three-dimensional Cartesian coordinates using the universal measuring station S8 Trimble DR Plus Robotic. J. of the Polish Mineral Eng. Soc., 33 (1), 85–90. ISSN 1640-4920.
  • [48] Sun, W., Wang, H., and Hou, K. (2018). Control of waste rock-tailings paste backfill for active mining subsidence areas. J. Clean. Prod., 171, 567-579. DOI: 10.1016/j.jclepro.2017.09.253.
  • [49] Tej, J., Ali Taha V., Sirkova M. et al. (2015). Factors of crisis situations at the level of large urban areas of Slovakia. Exclusive journal: economy and society and environment, 3(2), 41–49. ISSN: 1339-4509.
  • [50] Thaller, D., Dach, R., Seitz, M. et al. (2011). Combination of GNSS and SLR observations using satellite co-locations. J. Geod., 85(5), 257–272. DOI: 10.1007/s00190-010-0433-z.
  • [51] Tofani, V., Raspini, F., Catani, F. et al. (2013). Persistent scatterer interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens., 5, 1045–1065. DOI: 10.3390/rs5031045.
  • [52] Tzenkov, T., and Gospodinov, S. (2003). Geometric Analysis of Geodetic Data for Investigation of 3D Landslide Deformations. Nat. Hazards Rev., 4(2), 78–81. DOI: 10.1061/(ASCE)1527-6988(2003)4:2(78).
  • [53] Wang, W., Chen, Z., and Li, X. (2018). The arrangement of deformation monitoring project and analysis of monitoring data of a hydropower engineering safety monitoring system. IOP Conference Series: Earth and Environmental Science, 128, 012006. DOI: 10.1088/1755-1315/128/1/012006.
  • [54] Weiss, G., and Jakub, V. (2007). The test verification of 3D geodetic points and their changes. Acta Montan. Slovaca, 12 (Special 3), 612–616. ISSN 1335-1788.
  • [55] Weiss, G., Labant, S., Weiss, E. et al. (2009). Establishment of local geodetic nets. Acta Montan. Slovaca, 14 (4), 306–313. ISSN 1335-1788.
  • [56] Weiss, G., Labant, S., Weiss, E. et al. (2010). Detection of erroneous values in the measurement of local geodetic networks. Acta Montan. Slovaca, 15(1), 62–70. ISSN 1335-1788.
  • [57] Weiss, G., Bartos, K., Labant, S. et al. (2018). The identification of incorrectly determined new points in established 2D local geodetic network during deformation monitoring for environmental protection. J. Clean. Prod., 170, 789–796. DOI: 10.1016/j.jclepro.2017.09.179.
  • [58] Xu, G. (2007). GPS theory, Algorithms and Applications. Berlin: Springer.
  • [59] Yune, C.Y., Jun, K.J., Kim, K.S. et al. (2010). Analysis of slope hazard-triggering rainfall characteristics in Gangwon Province by database construction. J. Korean Geotech. Soc., 26(10), 27–38. ISSN 1229-2427.
  • [60] Zelenakova, M., Ganova, L., Purcz, P. et al. (2015). Methodology of flood risk assessment from flash floods based on hazard and vulnerability of the river basin. Nat. Hazards Rev., 79 (3), 2055–2071. DOI: 10.1111/jfr3.12298.
  • [61] Zelenakova, M., Ganova, L., Purcz, P. et al. (2018). Determination of the potential economic flood damages in Medzev, Slovakia. J.Flood Risk Manag., 11(1), 1090–1099. DOI: 10.1007/s11069-015-1945-x.
  • [62] Zhou, C., Shao, W., and van Westen, C.J. (2014). Comparing two methods to estimate lateral force acting on stabilizing piles for a landslide in the Three Gorges Reservoir, China. Eng. Geol., 173, 41–53. DOI: 10.1016/j.enggeo.2014.02.004.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb43ed01-b17c-4987-ad4c-804b264b9624
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.