PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment of Landfill Leachate by Using Fenton and Photo-Fenton Processes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the study on the use of the Fenton and photo-Fenton process for the treatment of landfill leachates from a stabilized landfill site. The effluents were characterized by pH of 8.1, color: 1320 mg Pt/L, COD of 1670 mg/L, of BOD5 155 mg/L, conductivity of 10.3 mS/cm, absorbance of UV254 0.332 and turbidity of 11 NTU. It has been shown that by using Fe(II) and hydrogen peroxide in the Fenton reaction, the organic compounds expressed as COD can be efficiently removed from the effluents. The process was carried out at various doses of H2O2 and Fe(II), using different reaction times in the Fenton process and different times of exposure in the photo-Fenton process. The best conditions for the Fenton process were obtained with a Fe/COD ratio of 1.4 and a H2O2/Fe molar ratio of 3.2. Under these conditions, the removal efficiency of COD was 85.8%. It was also shown that additional UV irradiation of leachate in the so-called photo-Fenton process and the use of appropriate hydrogen peroxide dosing conditions, can increase the effectiveness of COD removal. The maximum effect of COD removal in the photo-Fenton process was 70.7% at a dose of H2O2 3.3 g/L and a dose of Fe(II) of 0.6g Fe/L. An additional advantage of the photo-Fenton process is the ability to shorten the reaction time and reduce the dose of iron, which can thus reduce the amount of deposits generated.
Słowa kluczowe
Rocznik
Strony
194--199
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Bialystok University of Technology, ul. Wiejska 45E., 15-351 Białystok, Poland
Bibliografia
  • 1. APHA (American Public Health Association) 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.
  • 2. Barbusinski K, Pieczykolan B. 2010. COD removal from landfill leachate using fenton oxidation and coagulation. Architecture, Civil Engineering, Environment, 3(4), 93–100.
  • 3. Deng Y., Englehardt J.D. 2006. Treatment of land- fill leachate by Fenton process. Water Research, 40, 3683–3694.
  • 4. Hermosilla, D., Cortijo, M., and Huang, C.P. 2009. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Science of the Total Environment, 407(11), 3473–3481.
  • 5. Kang K., Shin K., Park H. 2002. Characterization of humic substances present in landfill leachates witch landfill ages and its implications. Water Research, 36, 4023–4032.
  • 6. Kang Y.W., Cho M.J., Hwang K.Y. 1998. Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Research, 5, 1247–1251.
  • 7. Kang Y.W., Hwang K.Y. 2000. Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 34, 2786–2790.
  • 8. Kavitha V, Palanivelu K. 2004. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55, 1235–1243.
  • 9. Kim S., Geissen S., Volgepohl A. 1997. Landfill leachate treatment of by a photoassisted Fenton reaction. Water Science & Technology, 35, 239–248.
  • 10. Klassen N.V., Marchington D., McGowan H.C.H. 1994. H2O2 determination by the I3-method and by KMnO4 titration. Analytical Chemistry, 66(18), 2921–2925.
  • 11. Koc-Jurczyk J., Jurczyk L. 2015. The efficiency of landfill leachate treatment using the Fenton’s reagent. Journal of Ecological Engineering, 16(3), 70–76.
  • 12. Krzemińska D., Neczaj E., Borowski G. 2015. Advanced oxidation processes for food industrial wastewater decontamination. Journal of Ecological Engineering, 16(2), 61–71.
  • 13. Kurniawan T.A., Lo W.H., Chan G.Y.S. 2006. Radicals catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate. Chemical Engineering Journal, 125, (1), 35–57.
  • 14. Lopez A., Pagano M., Volpe A., Di Pinto A. 2004. Fenton’s pretreatment of mature landfill leachate. Chemosphere, 54, 1000–1005.
  • 15. Naumczyk J., Prokurat I., Marcinowski P. 2012. Landfill leachates treatment by/UV, O3/H2O2, modified Fenton, and modified photo-Fenton methods. International Journal of Photoenergy, Article ID 909157, 1–9.
  • 16. Peres J.A., Beltran de Heredia J., Dominguez J.R. 2004. Integrated Fenton’s reagent – coagulation flocculation process for the treatment of cork processing Wastewater. Journal of Hazardous Materials, 107(3), 115–121.
  • 17. Primo O., Rivero M.J., Ortiz I. 2008. Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, 153, 834–842.
  • 18. Smol M., Włodarczyk-Makuła M., Mielczarek K., Bohdziewicz J. 2014. Comparison of the retention of selected PAHs from municipal landfill leachate by RO and UF processes. Desalination and Water Treatment, 52(19–21), 3889–3897.
  • 19. Talalaj I.A., Biedka P. 2015. Impact of concentrated leachate recirculation on effectiveness of leachate treatment by reverse osmosis. Ecological Engineering, 85, 185–192.
  • 20. Wiszniowski J., Robert D., Surmacz-Górska J., Miksch K., Weber J.V. 2006. Landfill leachate treatment methods: a review. Environmental Chemistry Letters, 4, 51–61.
  • 21. Yoon J., Cho S., Cho Y., Kim S. 1998. The characteristics of coagulation of Fenton reaction in the removal of landfill leachate organics. Water Science & Technology, 38, 209–214.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb3e1867-94bf-4849-b804-ebadf457547e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.