Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an original method for defining the magnetization characteristics of a 50% iron-nickel alloy as functions of ambient temperature. The presented method, based on Jiles–Atherton theory, reduces the cost and time needed to build a multifactor theoretical model of a ferromagnetic material in relation to temperature. The determination of the J-A equation parameters, which are crucial to obtain theoretical magnetization characteristics that are consistent with the real ones, is always challenging due to the imperfection of the J-A model. The authors focused on determining the temperature dependent magnetization characteristics DC in the range of low magnetic field strength. Based on the results of the experiment, the relationships between temperature and parameters of the basic J-A model were determined and discussed. The study was carried out for a wide temperature range often specified for high-performance electrical or electromechanical devices. The data presented and the method described can be successfully used to build Multiphysics models of magnetic phenomena. Based on the available knowledge, material data for the 50% Fe–Ni alloy, treated without a H 2 reducing atmosphere, has not yet been published in the universal form presented by the authors. The presented data and relationships between physical quantities were verified and confirmed experimentally. The presented measurement method is consistent with the industry standard IEC 60404-4.
Czasopismo
Rocznik
Tom
Strony
227--245
Opis fizyczny
Bibliogr. 16 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- Wrocław University of Science and Technology, Departament of Cryogenics and Aerospace Engineering, 50-370 Wrocław, Poland
- Collins Aerospace Bierutowska 65-86, 51-317 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Departament of Cryogenics and Aerospace Engineering, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Departament of Cryogenics and Aerospace Engineering, 50-370 Wrocław, Poland
Bibliografia
- [1] Waeckerlé T., Perichon P., Ateba-Betanda Y., Demier A., Recent progress in the application development of Fe50Ni50 type alloys, Journal of Magnetism and Magnetic Materials, vol. 564, Part 1 (2022), DOI: 10.1016/j.jmmm.2022.170075.
- [2] Chwastek K., Parametric examination of a phenomenological model of ferromagnetic hysteresis, Prace Instytutu Elektrotechniki (in Polish), vol. 252, pp. 41–54 (2011).
- [3] Cullity B.D., Graham C.D., Introduction to magnetic materials, John Wiley & Sons, Inc., Hoboken, New Jersey, ISBN: 978-0-471-47741-9 (2009).
- [4] Zijlstra H., Experimental Methods in Magnetism, North-Holland, Amsterdam, vol. 2 (1967).
- [5] Mörée G., Leijon M., Review of Hysteresis Models for Magnetic Materials, Energies, vol. 16, iss. 9 (2023), DOI: 10.3390/en16093908.
- [6] https://www.carpenterelectrification.com/resources, accessed February 2024.
- [7] Jiles D.C., Atherton D.L., Theory of ferromagnetic hysteresis, Journal of Applied Physics, vol. 55, pp. 2115–2121 (1984), DOI: 10.1063/1.333582.
- [8] Szewczyk R., The method of moments in Jiles–Atherton model based magnetostatic modelling of thin layers, Archives of Electrical Engineering vol. 67, no. 1, pp. 27–35 (2018), DOI: 10.24425/118989.
- [9] www.mathworks.com/help/sps/ref/nonlinearreluctance.html, accessed February 2024.
- [10] Zirka S.E., Moroz Y.I., Harrison R.G., Chwastek K., On physical aspects of the Jiles–Atherton hysteresis models, Journal of Applied Physics, vol. 112, 043916 (2012), DOI: 10.1063/1.4747915.
- [11] IEC 60404-4, Methods of measurement of d.c. magnetic properties of magnetically soft materials, Edition 2.2 (2008).
- [12] www.mathworks.com/help/simulink/lookup-tables.html, accessed February 2024.
- [13] Jiles D.C., Atherton D.L., Theory of ferromagnetic hysteresis, Journal of Magnetism and Magnetic Materials, vol. 61, pp. 48–60 (1986), DOI: 10.1016/0304-8853(86)90066-1.
- [14] Szewczyk R., Computational problems connected with Jiles–Atherton model of magnetic hysteresis, Advances in Intelligent Systems and Computing, Springer, vol. 267, pp. 275–283 (2014).
- [15] ASTM International, Standard Specification for Wrought Nickel-Iron Soft Magnetic Alloys (UNS K94490, K94840, N14076, N14080), A753 (2021).
- [16] Dudek G., Approximation of the hysteresis loop using computational intelligence methods, Przegląd Elektrotechniczny (in Polish), ISSN 0033-2097, R. 88, vol. 88, no. 12, pp. 8–11 (2012).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb365a1d-9ec6-4484-a5ff-9f2ef2f61044
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.