PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimental comparison of efficiency and emission levels of four-cylinder lean-burn passenger car-sized CNG engines with different ignition concepts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Today’s passenger car CNG engines are based on petrol engines which typically have restrictions preventing the exploitation of the full potential of methane based fuels, especially if they have to be operated also on petrol as a second fuel. Additionally, the use of threeway-catalysis limits the engine operation to λ = 1. Here, we present the efficiency potential and the raw emission characteristics for a dedicated four cylinder passenger car CNG engine without sticking to the usual combustion peak pressure and λ limitations. Lean combustion reduces the knocking tendency but, because of the higher pressure levels, increases the ignition energy demand. Therefore, different ignition systems (spark plug, prechamber, Diesel pilot) have been used.
Czasopismo
Rocznik
Strony
27--35
Opis fizyczny
Bibliogr. 18 poz., il.
Twórcy
  • ETH, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland)
  • Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf (Switzerland)
  • ETH, Swiss Federal Institute of Technology, Zürich (Switzerland)
  • Swiss Federal Institute of Technology, Zürich (Switzerland)
Bibliografia
  • [1] BACH, C., BÜTLER. T., HUBER, M. Abgasemissionen von Gasfahrzeugen. Aqua&Gas. 2017, 7/8, 40-43.
  • [2] BACH, C., LÄMMLE, C., BILL, R. et al. Clean engine vehicle a natural gas driven Euro-4/SULEV with 30% reduced CO2-emissions. SAE Technical Paper 2004-01-0645. 2004. DOI:10.4271/2004-01-0645.
  • [3] BARDIS, K., XU, G., KYRTATOS, P. et al. A zero dimensional turbulence and heat transfer phenomenological model for pre-chamber gas engines. SAE Technical Paper 2018-01-1453, 2018. DOI:10.4271/2018-01-1453.
  • [4] BOLLA, M., SHAPIRO, E., KOTZAGIANNI, M. et al. Numerical study of fuel and turbulence distributions in an automotive-sized scavenged pre-chamber. Combustion Engines. 2019, 176(1), 63-68. DOI: 10.19206/CE-2019-108.
  • [5] CATON, J.A. A comparison of lean operation and exhaust gas recirculation: thermodynamic reasons for the increases of efficiency. SAE Technical Paper 2013-01-0266, 2013. DOI:10.4271/2013-01-0266.
  • [6] HÄNGGI, S., HILFIKER, T., SOLTIC, P. et al. Control oriented analysis of a lean-burn light-duty natural gas research engine with scavenged pre-chamber ignition. Combustion Engines. 2019, 176(1), 44-55. DOI: 10.19206/CE-2019-106.
  • [7] HUTTER, R., RITZMANN, J., ELBERT, P., ONDER, C. Low-load limit in a diesel-ignited gas engine. Energies. 2017, 10, 1-27. DOI:10.3390/en10101450.
  • [8] KAMMERMANN, T., KREUTNER, W., TROTTMANN, M. et al. Spark-induced breakdown spectroscopy of methane/airand hydrogen-enriched methane/air mixtures at engine relevant conditions. Spectrochim Acta – Part B At Spectrosc. 2018, 148, 152-164. DOI:10.1016/j.sab.2018.06.013.
  • [9] KOTZAGIANNI, M., KYRTATOS, P., BOULOUCHOS, K. Optical investigation of prechamber combustion in an RCEM. Combustion Engines. 2018, 176(1), 12-17. DOI: 10.19206/CE-2019-102.
  • [10] KYRTATOS, P., BARDIS, K., BOLLA, M. et al. Transferability of insights from fundamental investigations into practical applications of prechamber combustion systems. Ignition Syst. Gasol. Engines – 4th Int. Conf. December 6-7, 2018, Berlin, IAV, 442-459.
  • [11] LUCAS, G., TALLU, G., WEIßNER, M. CFD-based development of an ignition chamber for a lean and high efficient CNG combustion. THIESEL 2018 Conf. Thermo- Fluid Dyn. Process. Direct Inject. Engines High-Pressure. 2018.
  • [12] N/N. International Energy Agency – World Energy Outlook. 2017.
  • [13] PIELECHA, I., BUESCHKE, W., SKOWRON, M. et al. Prechamber optimal selection for a two stage turbulent jet ignition type combustion system in CNG-fuelled engine. Combustion Engines. 2019, 176(1), 18-28. DOI: 10.19206/CE2019-103.
  • [14] SCHULLER, O., REUTER, B., HENGSTLER, J. et al. Greenhouse gas intensity of natural gas transport. 2017.
  • [15] SHAPIRO, E., AHMED, I., TINEY, N. Advanced ignition modelling for pre-chamber combustion in lean burn gas engines. Ignition Syst. Gasol. Engines – 4th Int. Conf. December 6-7, 2018, Berlin, IAV, 104-121.
  • [16] THURNHEER, T, SOLTIC, P, DIMOPOULOS EGGENSCHWILER, P. S.I. engine fuelled with gasoline, methane and methane/hydrogen blends: Heat release and loss analysis. Int J Hydrogen Energy. 2009, 34, 2494-2503. DOI:10.1016/j.ijhydene.2008.12.048.
  • [17] Volkswagen. Volkswagen Konzern treibt gemeinschaftlichen Ausbau der Erdgas- Mobilität voran. Press Release from 02052017 2017.
  • [18] ZURBRIGGEN, F., HUTTER, R., ONDER, C. Diesel minimal combustion control of a natural gas-diesel engine. Energies. 2016, 9. DOI:10.3390/en9010058.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb320120-5221-441d-8e2d-e5d53604408e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.