PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Groundwater-yielding capacity, water-rock interaction, and vulnerability assessment of typical gneissic hydrogeologic units using geoelectrohydraulic method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geohydraulic parameters, namely hydraulic conductivity (K), transmissivity (T), effective porosity (φ), permeability (kp), anisotropy coefficient (λ), and longitudinal conductance (S), of aquifer units in Etioro-Akoko, southwestern Nigeria, were evaluated using the Schlumberger vertical electrical sounding (VES) technique. This study aimed to understand the hydrodynamics and water–rock interaction of the near-surface crustal architecture to determine the groundwater yield and vulnerability of the aquifer units in the study area. A total of 7 model curve types were generated for fifty-two geoelectrical surveyed points, with percentage distributions in the order of HA>AA>H>KH>A>HK>AK. The VES curve models constrained the subsurface layers into topsoil, weathered units, weathered/fractured bedrock units, and fresh bedrock. The weathered and fractured aquifer zones occurred at the depths of 8 m and>16 m (with depths exceeding 26.5 m for some sections). The K and T values for the aquifer units varied from 0.1901 to 0.6188 m/day and 0.7111 to 6.3525 m2/day, respectively. These parameters coupled with the aquifer φ (18.03–23.35%) and kp (0.028–0.089 µm2) classified the delineated aquifer units as low to moderate groundwater-yielding capacity aquifers, with recorded resistivity values between 85.1 Ω-m and<613.0 Ω-m. The observed positive correlations and R2 values with>32–100% prediction rates affirmed the dependence of K on T, φ, and kp for effective water–rock interactions and groundwater transmissibility. The recorded S values (0.0146–0.162 mhos) and low logarithm hydraulic resistance, Log C (0.89–1.75 years), suggested poor to weak aquifer protective capacity ratings, resulting in high aquifer vulnerability index delineated across the study area. As a result, deep-weathered/fractured aquifers should be exploited for sustainable potable groundwater supplies. However, intended wells/boreholes in the study area must be developed properly for long-term groundwater abstraction to alleviate potable groundwater deficit and optimize future operational drilling costs.
Czasopismo
Rocznik
Strony
697--721
Opis fizyczny
Bibliogr. 75 poz.
Twórcy
  • Department of Earth Sciences, Adekunle Ajasin University, 001, Akungba-Akoko, Ondo State, Nigeria
  • School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia
  • School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia
  • Department of Earth Sciences, Adekunle Ajasin University, 001, Akungba-Akoko, Ondo State, Nigeria
  • Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
  • Department of Chemical Sciences, Adekunle Ajasin University, 001, Akungba-Akoko, Ondo State, Nigeria
  • National Laboratory Headquarter, Nigeria Building and Road Research Institute, 1055, Ota, Ogun State, Nigeria
  • Department of Geosciences, University of Lagos, Akoko, Lagos State, Nigeria
  • Department of Earth Sciences, Adekunle Ajasin University, 001, Akungba-Akoko, Ondo State, Nigeria
Bibliografia
  • 1. Abdulrazzaq ZT, Al-Ansari N, Aziz NA, Agbasi OE, Etuk SE (2020) Estimation of main aquifer parameters using geoelectric measurements to select the suitable wells locations in Bahr Al-Najaf depression. Iraq Groundw Sust Dev 11:100437. https://doi.org/10.1016/j.gsd.2020.100437
  • 2. Adeola AO, Akingboye AS, Ore OT, Oluwajana OA, Adewole AH, Olawade DB, Ogunyele AC (2022a) Crude oil exploration in Africa: socio-economic implications, environmental impacts, and mitigation strategies. Environ Syst Decis 42(1):26–50. https://doi.org/10.1007/s10669-021-09827-x
  • 3. Adeola AO, Ore OT, Fapohunda O, Adewole AH, Akerele DD, Akingboye AS, Oloye FF (2022b) Psychotropic drugs of emerging concerns in aquatic systems: ecotoxicology and remediation approaches. Chem Africa. https://doi.org/10.1007/s42250-022-00334-3
  • 4. Akingboye AS, Bery AA (2022) Characteristics and rippability conditions of near-surface lithologic units (Penang Island, Malaysia) derived from multimethod geotomographic models and geostatistics. J Appl Geophys 204:104723. https://doi.org/10.1016/j.jappgeo.2022.104723
  • 5. Akingboye AS, Ogunyele AC (2019) Insight into seismic refraction and electrical resistivity tomography techniques in subsurface investigations. Rud Geol Naft Zbor 34(1):93–111
  • 6. Akingboye AS, Osazuwa IB (2021) Subsurface geological, hydrogeophysical and engineering characterisation of Etioro-Akoko, southwestern Nigeria, using electrical resistivity tomography. NRIAG J Astron Geophys 10(1):43–57. https://doi.org/10.1080/20909977.2020.1868659
  • 7. Akingboye AS, Osazuwa IB, Mohammed MZ (2019) Electrical resistivity tomography for sustainable groundwater development in a complex geological area. Mater Geoenviron 66(2):121–128. https://doi.org/10.2478/rmzmag-2019-0004
  • 8. Akingboye AS, Osazuwa IB, Mohammed MZ (2020) Electrical resistivity tomography for geoengineering investigation of subsurface defects: a case study of Etioro-Akoko highway, Ondo State. Southwest Niger Stud Quat 37(2):101–107
  • 9. Akingboye AS, Ogunyele AC, Jimoh AT, Adaramoye OB, Adeola AO, Ajayi T (2021) Radioactivity, radiogenic heat production and environmental radiation risk of the basement complex rocks of Akungba-Akoko, southwestern Nigeria: insights from in situ gamma-ray spectrometry. Environ Earth Sci. https://doi.org/10.1007/s12665-021-09516-7
  • 10. Akingboye AS, Bery AA, Kayode JS, Asulewon AM, Bello R, Agbasi OE (2022) Near-surface crustal architecture and geohydrodynamics of the crystalline basement terrain of araromi, akungba-akoko, SW Nigeria, derived from multi-geophysical methods. Nat Resour Res 31(1):215–236. https://doi.org/10.1007/s11053-021-10000-z
  • 11. Akintorinwa OJ, Atitebi MO, Akinlalu AA (2020) Hydrogeophysical and aquifer vulnerability zonation of a typical basement complex terrain: a case study of odode idanre southwestern Nigeria. Heliyon 6(8):e04549. https://doi.org/10.1016/j.heliyon.2020.e04549
  • 12. Alkindi KM, Mukherjee K, Pandey M, Arora A, Janizadeh S, Pham QB, Anh DT, Ahmadi K (2021) Prediction of groundwater nitrate concentration in a semiarid region using hybrid bayesian artificial intelligence approaches. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-17224-9
  • 13. Archie GEE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Transact AIME 146(01):54–62. https://doi.org/10.2118/942054-G
  • 14. Arifin MH, Kayode JS, Ismail MKI, Abdullah AM, Embrandiri A, Nazer NSM, Azmi A (2021) Environmental hazard assessment of industrial and municipal waste materials with the applications of RES2-D method and 3-D Oasis Montaj modeling: a case study at Kepong, Kuala Lumpur, Peninsula Malaysia. J Hazard Mater 406:124282. https://doi.org/10.1016/j.jhazmat.2020.124282
  • 15. Arora T, Boisson A, Ahmed S (2016) Non-intrusive hydro-geophysical characterization of the unsaturated zone of South India-a case study. J Afr Earth Sc 122:88–97
  • 16. Binley, A. (2015). Tools and Techniques: Electrical Methods. In Treatise on Geophysics (Vol. 11, pp. 233–259). Elsevier Inc. https://doi.org/10.1016/B978-0-444-53802-4.00192-5
  • 17. Cai X, Rosegrant MW (2004) Optional water development strategies for the yellow river basin: balancing agricultural and ecological water demands. Water Resour Res 40(8):1–11. https://doi.org/10.1029/2003WR002488
  • 18. Carroll JD, Green PE (1997) Applying the tools to multivariate data. In: Mathematical tools for applied multivariate analysis (pp. 259–294). Elsevier. https://doi.org/10.1016/b978-012160954-2/50007-x
  • 19. Chandra S, Ahmed S, Ram A, Dewandel B (2008) Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. J Hydrol 357(3–4):218–227. https://doi.org/10.1016/j.jhydrol.2008.05.023
  • 20. Cosgrove WJ, Loucks DP (2015) Water management: current and future challenges and research directions. Water Resour Res 51(6):4823–4839
  • 21. Courtois N, Lachassagne P, Wyns R, Blanchin R, Bougaïré FD, Somé S, Tapsoba A (2010) Large-scale mapping of hard-rock aquifer properties applied to burkina faso. Ground Water 48(2):269–283. https://doi.org/10.1111/j.1745-6584.2009.00620.x
  • 22. de Almeida A, Maciel DF, Sousa KF, Nascimento CTC, Koide S (2021) Vertical electrical sounding (VES) for estimation of hydraulic parameters in the porous aquifer. Water 13(2):170. https://doi.org/10.3390/w13020170
  • 23. Dehghanipour AH, Zahabiyoun B, Schoups G, Babazadeh H (2019) A WEAP-MODFLOW surface water-groundwater model for the irrigated miyandoab plain, Urmia lake basin, Iran: multi-objective calibration and quantification of historical drought impacts. Agric Water Manag 223(February):105704. https://doi.org/10.1016/j.agwat.2019.105704
  • 24. Dehghanipour AH, Schoups G, Zahabiyoun B, Babazadeh H (2020) Meeting agricultural and environmental water demand in endorheic irrigated river basins: a simulation-optimization approach applied to the urmia lake basin in Iran. Agric Water Manag 241:106353. https://doi.org/10.1016/j.agwat.2020.106353
  • 25. Ekanem AM (2020) Georesistivity modelling and appraisal of soil water retention capacity in akwa Ibom state university main campus and its environs, southern Nigeria. Model Earth Syst Environ 6(4):2597–2608. https://doi.org/10.1007/s40808-020-00850-6
  • 26. Ekanem AM, George NJ, Thomas JE, Nathaniel EU (2020) Empirical relations between aquifer geohydraulic-geoelectric properties derived from surficial resistivity measurements in parts of akwa ibom state Southern Nigeria. Nat Resour Res 29(4):2635–2646. https://doi.org/10.1007/s11053-019-09606-1
  • 27. Ezema OK, Ibuot JC, Obiora DN (2020) Geophysical investigation of aquifer repositories in ibagwa aka, enugu state, Nigeria, using electrical resistivity method. Groundw Sustain Dev. https://doi.org/10.1016/j.gsd.2020.100458
  • 28. Fagbohun BJ, Omitogun AA, Bamisaiye OA, Ayoola FJ (2020) Gold potential of the pan African trans-sahara belt and prospect for further exploration. In Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2019.103260
  • 29. Faniran A, Omorinbola EO (1980) Trend surface analysis and practical implications of weathering depths in basement complex rocks of Nigeria. Niger Geogr J 23:113–126
  • 30. Ferre E, Gleizes G, Caby R (2002) Obliquely convergent tectonics and granite emplacement in the trans-saharan belt of eastern nigeria : a synthesis. Precambrian Res 114:199–219
  • 31. Fetter, C. W. (2018). Applied Hydrogeology (4th ed.). Waveland Press, Inc., Long Grove, Illinois. https://www.amazon.com/Applied-Hydrogeology-C-W-Fetter-ebook/dp/B07CM8Y415
  • 32. Gao Q, Shang Y, Hasan M, Jin W, Yang P (2018) Evaluation of a Weathered Rock Aquifer Using ERT Method in South Guangdong China. Water 10(3):293
  • 33. George NJ, Ibuot JC, Obiora DN (2015) Geoelectrohydraulic parameters of shallow sandy aquifer in Itu, akwa ibom state (Nigeria) using geoelectric and hydrogeological measurements. J Afr Earth Sc 110:52–63. https://doi.org/10.1016/j.jafrearsci.2015.06.006
  • 34. George NJ, Akpan AE, Akpan FS (2017) Assessment of spatial distrilbution of porosity and aquifer geohydraulic parameters in parts of the tertiary – quaternary hydrogeoresource of south-eastern Nigeria. NRIAG J Astron Geophys 6(2):422–433. https://doi.org/10.1016/j.nrjag.2017.09.001
  • 35. George NJ, Ibuot JC, Ekanem AM, George AM (2018) Estimating the indices of inter-transmissibility magnitude of active surficial hydrogeologic units in itu, akwa ibom state, southern Nigeria. Arab J Geosci. https://doi.org/10.1007/s12517-018-3475-9
  • 36. González J, Saldaña M, Arzúa J (2019) Analytical model for predicting the UCS from P-Wave velocity, density, and porosity on saturated limestone. Appl Sci 9(23):5265. https://doi.org/10.3390/APP9235265
  • 37. Goodenough KM, Lusty PAJ, Roberts NMW, Key RM, Garba A (2014) Post-collisional Pan-African granitoids and rare metal pegmatites in western Nigeria: age, petrogenesis, and the “pegmatite conundrum.” Lithos 200–201(1):22–34. https://doi.org/10.1016/j.lithos.2014.04.006
  • 38. Hasan M, Shang Y, Akhter G, Khan M (2017) Geophysical investigation of fresh-saline water interface: a case study from south Punjab. Pak Groundw 55(6):841–856. https://doi.org/10.1111/gwat.12527
  • 39. Hasan M, Shang Y, Jin W, Akhter G (2019) Assessment of aquifer vulnerability using integrated geophysical approach in weathered terrains of south china. Open Geosci 11(1):1129–1150. https://doi.org/10.1515/geo-2019-0087
  • 40. Hasan M, Shang Y, Akhter G, Jin W (2020) Delineation of contaminated aquifers using integrated geophysical methods in Northeast Punjab Pakistan. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7941-y
  • 41. Hasan M, Shang Y, Jin W, Akhter G (2021) Estimation of hydraulic parameters in a hard rock aquifer using integrated surface geoelectrical method and pumping test data in southeast Guangdong. China Geosci J 25(2):223–242. https://doi.org/10.1007/s12303-020-0018-7
  • 42. Henriet JP (1976) Direct applications of the Dar-Zarrouk parameters in groundwater surveys. Geophys Prospect 24(2):344–353. https://doi.org/10.1111/j.1365-2478.1976.tb00931.x
  • 43. Ibuot JC, Obiora DN, Ekpa MMM, Okoroh DO (2017) Geoelectrohydraulic investigation of the surficial aquifer units and corrosivity in parts of Uyo L. G. A., Akwa Ibom State, Southern Nigeria. Appl Water Sci 7(8):4705–4713. https://doi.org/10.1007/s13201-017-0632-3
  • 44. Krasny J (1993) Classification of transmissivity magnitude and variation. Ground Water 31(2):230–236. https://doi.org/10.1111/j.1745-6584.1993.tb01815.x
  • 45. Krӧner A, Ekwueme BN, Pidgeon RT (2001) The Oldest Rocks in West Africa: SHRIMP Zircon Age for Early Archean Migmatitic Orthogneiss at Kaduna Northern Nigeria. J Geol 109(3):399–406
  • 46. Lachassagne P, Ahmed S, Dewandel B, Courtois N, Maréchal JC, Perrin J, Wyns R (2008) Recent improvements in the conceptual model of hard rock aquifers and its application to the survey, management, modelling and protection of groundwater. Clim Afr 334:250–256
  • 47. Mohammed MZ, Ogunribido THT, Funmilayo AT (2012) Electrical resistivity sounding for subsurface delineation and evaluation of groundwater potential of araromi akungba-Akoko ondo state Southwestern Nigeria. J Environ Earth Sci 2(7):29–40
  • 48. Niwas S, Celik M (2012) Equation estimation of porosity and hydraulic conductivity of Ruhrtal aquifer in Germany using near surface geophysics. J Appl Geophys 84:77–85. https://doi.org/10.1016/j.jappgeo.2012.06.001
  • 49. Niwas S, de Lima OAL (2003) Groundwater 2005 aquifer parameter estimation from surface resistivity data. Ground Water. https://doi.org/10.1111/j.1745-6584.2003.tb02572.x
  • 50. Obaje NG (2009) Geology and Mineral Resources of Nigeria. Springer, Berlin
  • 51. Obiora DN, Ibuot JC (2020) Geophysical assessment of aquifer vulnerability and management: a case study of University of Nigeria, Nsukka. Enugu State Appl Water Sci 10(1):29. https://doi.org/10.1007/s13201-019-1113-7
  • 52. Obiora DN, Alhassan UD, Ibuot JC, Okeke FN (2016) Geoelectric evaluation of aquifer potential and vulnerability of Northern Paiko, Niger State. Nigeria Water Environ Res 88(7):644–651. https://doi.org/10.2175/106143016X14609975746569
  • 53. Odeyemi, I. B. (1988). Lithostratigraphy and structural relationships of the upper Precambrian metasediments in Igarra area, southwestren Nigeria. In Precambrian Geology of Nigeria. Precambrian Geology of Nigeria. Geological Survey of Nigeria p. 111–125
  • 54. Offodile, M. (2014). Ground Water Study and Development in Nigeria. Mecon Geology and Engineering Service Limited p.453 Jos, Nigeria.
  • 55. Oguama BE, Ibuot JC, Obiora DN (2020) Geohydraulic study of aquifer characteristics in parts of Enugu north local government area of Enugu state using electrical resistivity soundings. Appl Water Sci 10(5):120. https://doi.org/10.1007/s13201-020-01206-2
  • 56. Ogunyele AC, Obaje SO, Akingboye AS, Adeola AO, Babalola AO, Olufunmilayo AT (2020) Petrography and geochemistry of neoproterozoic charnockite–granite association and metasedimentary rocks around okpella, southwestern Nigeria. Arab J Geosci. https://doi.org/10.1007/s12517-020-05785-x
  • 57. Ogunyele AC, Oluwajana OA, Ehinola IQ, Ameh BE, Salaudeen TA (2020b) Petrochemistry and petrogenesis of the Precambrian Basement Complex rocks around Akungba-Akoko, southwestern Nigeria. Mater Geoenviron 66(3):173–183. https://doi.org/10.2478/rmzmag-2019-0036
  • 58. Oladapo M, Mohammed M, Adeoye O, Adetola B (2004) Geoelectrical investigation of the Ondo state housing corporation estate ijapo akure, southwestern Nigeria. J Min Geol 40(1):41–48. https://doi.org/10.4314/jmg.v40i1.18807
  • 59. Rahaman, M. A. (1976). Review of the Basement Geology of southwestern Nigeria. In C. A. Kogbe (Ed.), Geology of Nigeria (p. 41). Elizabeth Publisher. Co., Lagos.
  • 60. Rahaman, M. A. (1988). Recent advances in the study of the Basement Complex of Nigeria. In P. O. Oluyide, W. C. Mbonu, A. E. O. Ogezi, I. G. Egbuniwe, A. C. Ajibade, & A. C. Umeji (Eds.), Precambrian Geology of Nigeria (p. 11). Geological Survey of Nigeria, Kaduna.
  • 61. Rahaman, M. A. (1989). Review of the basement geology of SW Nigeria. In C. A. Kogbe (Ed.), Geology of Nigeria (pp. 41–58). Elizabeth Publishing. Co. Nigeria. http://www.sciepub.com/reference/51950
  • 62. Raji WO, Abdulkadir KA (2020) Evaluation of groundwater potential of bedrock aquifers in geological sheet 223 ilorin, Nigeria, using geo-electric sounding. Appl Water Sci 10(10):220. https://doi.org/10.1007/s13201-020-01303-2
  • 63. Sajeena S (2014) Identification of groundwater prospective zones using \ngeoelectrical and electromagnetic surveys \n. Int J Eng Invent (IJEI) 3(6):7–21
  • 64. Schoups G, Addams CL, Minjares JL, Gorelick SM (2006) Sustainable conjunctive water management in irrigated agriculture: Model formulation and application to the Yaqui Valley. Mexico Water Resour Res 42(10):1–19. https://doi.org/10.1029/2006WR004922
  • 65. Singh KP (2005) Nonlinear estimation of aquifer parameters from surficial measurements. Hydrol Earth Syst Sci 2(3):917–938. https://doi.org/10.5194/hessd-2-917-2005
  • 66. Singh A (2014) Simulation–optimization modeling for conjunctive water use management. Agric Water Manag 141:23–29. https://doi.org/10.1016/j.agwat.2014.04.003
  • 67. Singh A, Panda SN (2013) Optimization and Simulation Modelling for Managing the Problems of Water Resources. Water Resour Manage 27(9):3421–3431. https://doi.org/10.1007/s11269-013-0355-7
  • 68. Soupios PM, Georgakopoulos P, Papadopoulos N, Saltas V, Andreadakis A, Vallianatos F, Sarris A, Makris JP (2007) Use of engineering geophysics to investigate a site for a building foundation. J Geophys Eng 4(1):94–103. https://doi.org/10.1088/1742-2132/4/1/011
  • 69. Stober I, Bucher K (2015a) Hydraulic conductivity of fractured upper crust: insights from hydraulic tests in boreholes and fluid-rock interaction in crystalline basement rocks. Geofluids 15(1–2):161–178. https://doi.org/10.1111/gfl.12104
  • 70. Stober I, Bucher K (2015b) Hydraulic and hydrochemical properties of deep sedimentary reservoirs of the Upper Rhine Graben. Europe Geofluids 15(3):464–482. https://doi.org/10.1111/gfl.12122
  • 71. United Nations (2012). World Population Prospects. United Nations https://doi.org/10.18356/08b807d4-en
  • 72. Van Stempvoort D, Ewert L, Wassenaar L (1993) Aquifer vulnerability index: A GIS - compatible method for groundwater vulnerability mapping. Canadian Water Resou J 18(1):25–37. https://doi.org/10.4296/cwrj1801025
  • 73. Venkateswaran S, Vijay MP, Karuppannan S (2014) Delineation of groundwater potential zones using geophysical and GIS techniques in the sarabanga sub basin, cauvery river, Tamilnadu, India. Int J Curr Res Acad Rev 2(1):58–75
  • 74. Weisenberger T, Bucher K (2011) Mass transfer and porosity evolution during low temperature water–rock interaction in gneisses of the simano nappe: arvigo, Val calanca, swiss alps. Contrib Miner Petrol 162(1):61–81. https://doi.org/10.1007/s00410-010-0583-2
  • 75. Woakes M, Rahaman MA, Ajibade AC (1987) Some metallogenetic features of the Nigerian basement. J African Earth Sci. https://doi.org/10.1016/0899-5362(87)90004-2
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb319e88-80f9-4c1a-8246-58521775f84a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.