PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid RANS/LES of plane jets impinging on a flat plate at small nozzle-plate distances

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A k-ω based hybrid RANS/LES (Reynolds-averaged Navier-Stokes/large eddy simulation) model is tested for simulation of plane impinging jets at various nozzle-plate distances (H/B, where H is the distance and B is the slot's width) and various Reynolds numbers (based on the slot's width and the velocity in the symmetry plane). The studied combinations are H/B=2 for Re=10000, H/B=4 for Re=18000 and H/B=9.2 for Re=20000. The focus is on small distance of the nozzle exit to the plate. In LES mode, the hybrid RANS/LES model uses two definitions of the local grid size, one based on the maximum distance between the cell faces in the destruction term of the turbulent kinetic energy equation and one based on the cube root of the cell volume in the eddy-viscosity formula. This allows accounting for flow inhomogeneity on anisotropic grids. In RANS mode, the hybrid model turns into the newest version of the k-ω model by Wilcox.
Rocznik
Strony
143--166
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24 00-665, Warsaw, Poland
autor
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24 00-665, Warsaw, Poland
autor
  • Department of Flow, Heat and Combustion Mechanics, Ghent University, St. Pietersnieuwstraat 41, B-9000, Ghent, Belgium
autor
  • Department of Flow, Heat and Combustion Mechanics, Ghent University, St. Pietersnieuwstraat 41, B-9000, Ghent, Belgium
  • Department of Flow, Heat and Combustion Mechanics, Ghent University, St. Pietersnieuwstraat 41, B-9000, Ghent, Belgium
Bibliografia
  • 1. C. V. Tu, D. H. Wood, Wall pressure and shear stress measurements beneath an impinging jet, Experimental Thermal and Fluid Sci., 13, 364–373, 1996.
  • 2. J. Sakakibara, K. Hishida, M. Maeda, Vortex structure and heat transfer in the stagnation region of an impinging plane jet (simultaneous measurements of velocity and temperature fields by digital particle image velocimetry and laser-induced fluorescence), Int. J. Heat Mass Transfer, 40, 3163–3176, 1997.
  • 3. S. Ashforth-Frost, K. Jambunathan, C. F. Whitney, Velocity and turbulence characteristics of a semiconfined orthogonally impinging slot jet, Experimental Thermal and Fluid Science, 14, 60–67, 1997.
  • 4. J. Zhe, V. Modi, Near wall measurements for a turbulent impinging slot jet, Trans. of the ASME, J. Fluid Eng., 123, 112–120, 2001.
  • 5. Y. Guo, D. H. Wood, Measurements in the vicinity of a stagnation point, Experimental Thermal and Fluid Science, 25, 605–614, 2002.
  • 6. V. Narayanan, J. Seyed-Yagoobi, R. H. Page, An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow, Int. J. Heat and Mass Transfer, 47, 1827–1845, 2004.
  • 7. M. B. Dogruoz, Experimental and Numerical Investigation of Turbulent Heat Transfer due to Rectangular Impinging Jets, Ph.D. Thesis, the University of Arizona, Tucson, Arizona, 2005.
  • 8. J. Senter, C. Solliec, Flow field analysis of a turbulent slot air jet impinging on a moving flat surface, Int. J. Heat Fluid Flow, 28, 708–719, 2007.
  • 9. T. Cziesla, G. Biswas, H. Chattopadhyay, N. K. Mitra, Large-eddy simulation of flow and heat transfer in an impinging slot jet, Int. J. Heat Mass Transfer, 22, 500–508, 2001.
  • 10. F. Beaubert, S. Viazzo, Large eddy simulations of plane turbulent impinging jets AT moderate Reynolds numbers, Int. J. Heat Fluid Flow, 24, 512–519, 2003.
  • 11. M. Tsubokura, T. Kobayashi, N. Taniguchi, W. P. Jones, A numerical study on the eddy structures of impinging jets exited at the inlet, Int. J. Heat Fluid Flow, 24, 500–511, 2003.
  • 12. H. Hattori, Y. Nagano, Direct numerical simulation of turbulent heat transfer in plane impinging jet, Int. J. Heat Fluid Flow, 25, 749–758, 2004.
  • 13. J. A. Fernandez, J. C. Elicer-Cortes, A. Valencia, M. Pavageau, S. Gupta, Comparison of low-cost two-equation turbulence models for prediction flow dynamics in twinjets devices, Int. Commun. Heat Mass Transfer, 34, 570–578, 2007.
  • 14. J. E. Jaramillo, C. D. Perez-Segarra, I. Rodriguez, A. Oliva, Numerical study of plane and round impinging jets using RANS models, Numer. Heat Transfer Part B, 54, 213–237, 2008.
  • 15. D. C. Wilcox, Formulation of the k-! turbulence model revisited, AIAA Journal, 46, 2823–2837, 2008.
  • 16. M. Strelets, Detached eddy simulation of massively separated flows, AIAA Paper 2001-0879, 2001.
  • 17. J. Fröhlich, D. von Terzi, Hybrid LES/RANS methods for the simulation of turbulent flows, Progress in Aerospace Sciences, 44, 349–377, 2008.
  • 18. L. Davidson, S. H. Peng, Hybrid LES-RANS modelling: a one-equation SGS model combined with a k-! model for predicting recirculating flows, Int. J. Numer. Meth. Fluids, 43, 1003–1018, 2003.
  • 19. J. C. Kok, H. Dol, H. Oskam, H. van der Ven, Extra-large eddy simulation of massively separated flows, AIAA Paper 2004-0264, 2004.
  • 20. J. Yan, C. Mocket, F. Thiele, Investigation of alternative length scale substitutions in detached-eddy simulation, Flow Turbulence and Combustion, 74, 85–102, 2005.
  • 21. S. Kubacki, E. Dick, Hybrid RANS/LES of flow and heat transfer in round impinging jets, Int. J. Heat Fluid Flow, 32, 631–651, 2011.
  • 22. S. Kubacki, E. Dick, Simulation of plane impinging jets with k-! based hybryd RANS/LES models, Int. J. Heat Fluid Flow, 31, 862–878, 2010.
  • 23. S. Kubacki, J. Rokicki, E. Dick, Hybrid RANS/LES computation of plane impinging jet flow, Arch. Mech., 63, 117–136, 2011.
  • 24. A. Scotti, C. Meneveau, D. K. Lilly, Generalized Smagorinsky model for anisotropic grids, Phys. Fluids A, 5, 2306–2308, 1993.
  • 25. P. R. Spalart, S. Deck, M. L. Shur, K. D. Squires, M. Strelets, A. Travin, A New version of detached-eddy simulation, resistant to ambiguous grid densities, Theor. Comput. Fluid Dyn., 20, 181–195, 2006.
  • 26. D. C. Wilcox, Turbulence Modeling for CFD, 2nd ed., DCW Industries Inc., La Canada CA, 1998.
  • 27. F. Mathey, D. Cokljat, J. P. Bertoglio, E. Sergent, Assessment of the Hortex method for Large Eddy Simulation inlet conditions, Progress Comput. Fluid Dynamics, 6, 58–67, 2006.
  • 28. S. Kubacki, E. Dick, Convective heat transfer prediction for an axisymmetric jet impinging onto a flat plate with an improved k-! model, Int. J. Numer. Methods in Heat and Fluid Flow, 19, 960–981, 2009.
  • 29. B. Chaouat, R. Schiestel, A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows, Phys. Fluids, 17, 065106, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb2f3243-e42d-4974-9523-9848f241cae2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.