PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing Hydrological Drought in the Nekor Watershed Using the Streamflow Drought Index: Patterns, Trends, and Implications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Nekor Watershed, situated in the northwest corner of Africa, experiences significant climatic variability, posing challenges for water management. This study assesses hydrological drought in the Nekor Watershed from 1945 to 2016 and analyzes its socio-economic impacts on agriculture and population distribution. The purpose of this research is to understand the extent and trends of hydrological drought in the Nekor Watershed and its socio-economic consequences, particularly on agriculture and population dynamics. The study employs the Standardized Runoff Efficiency Index (SDI), drought duration, severity (S), magnitude (M), and relative frequency (RF) metrics, along with the Mann-Kendall trend test and Sen’s Slope analysis to evaluate hydrological drought. It integrates statistically representative data on cereal crop yields, livestock populations, and results from the General Population and Housing Census to understand the socioeconomic impacts. Analysis reveals substantial climatic variability with pronounced dry and wet periods. Notably, the autumn season exhibits a weak positive trend in hydrological drought, indicating a slight increase in severity over the years. Conversely, the spring season shows a negative trend in hydrological drought, indicating a decrease in severity over the years, especially in the month of May. A broader trend towards increasing hydrological drought emerges, particularly since the 1980s. These dry decades pose significant challenges for the region’s socio-economic sectors, including agriculture and population distribution. The study is limited by the availability and quality of historical hydrological and socioeconomic data, which may affect the precision of trend analyses and impact assessments. Future research could benefit from more granular and continuous data sets. Understanding the trends and impacts of hydrological drought in the Nekor Watershed provides critical insights for water management policies and strategies, helping to mitigate socio-economic risks associated with drought. This study is novel in its comprehensive analysis of long-term hydrological drought trends in the Nekor Watershed and their socio-economic impacts. The integration of diverse data sets and advanced statistical methods enhances the robustness of the findings, contributing significantly to the scientific understanding of drought dynamics in this region.
Twórcy
  • Geography Department, Abdelmalek Essaadi University, Martil, B.P. 210, Morocco
autor
  • Geography Department, Abdelmalek Essaadi University, Martil, B.P. 210, Morocco
  • Geology Department, King Saud University, Riyadh, 11451, Saudi Arabia
  • Geography Department, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
  • Geography Department, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
  • Geography Department, Abdelmalek Essaadi University, Martil, B.P. 210, Morocco
  • Geography Department, School of Sciences Netaji Subhas University Kolkata, West Bengal, 700090 India
Bibliografia
  • 1. Abdelmajid, S., Mukhtar, A., Baig, M.B., Reed, M.R. 2021. Climate change, agricultural policy and food security in Morocco. Emerging Challenges to Food Production and Security in Asia, Middle East, and Africa: Climate Risks and Resource Scarcity, 171– 196. https://doi.org/10.1007/978-3-030-72987-5_7
  • 2. Acevedo, M., Pixley, K., Zinyengere, N., Meng, S., Tufan, H., Cichy, K., Bizikova, L., Isaacs, K., Ghezzi-Kopel, K., Porciello, J. 2020. A scoping review of adoption of climate-resilient crops by small-scale producers in low-and middle-income countries. Nature plants 6, 1231–1241. https://doi.org/10.1038/s41477-020-00783-z
  • 3. Amouch, S., and Akhssas, A. 2023. Drought variability in Agadir’s Region (Southern Morocco) – Recent and future trends. Ecological Engineering & Environmental Technology 24, 241–250. https://doi.org/10.12912/27197050/157169
  • 4. Bastos, A., Ciais, P., Friedlingstein, P., Sitch, S., Pongratz, J., Fan, L., Wigneron, J.-P., Weber, U., Reichstein, M., Fu, Z. 2020. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science advances 6, eaba2724. https://doi.org/10.1126/sciadv.aba2724
  • 5. Ben-Zvi, A. 1987. Indices of hydrological drought in Israel. Journal of hydrology 92, 179–191
  • 6. Benyoussef, S., Arabi, M., El Yousfi, Y., Cheikh, B.B., Abdaoui, A., Azirar, M., Mechkirrou, L., El Ouarghi, H., Zegzouti, Y.F., Boughrous, A.A. 2024. Climate change and water resources management in the Ghis-Nekor watershed (North of Morocco)–A comprehensive analysis using SPI, RDI and DI Indices. Ecological Engineering & Environmental Technology 25. https://doi.org/10.12912/27197050/176275
  • 7. Bossard, R. 1978. Mouvements migratoires dans le Rif oriental: le travail en Europe. Aspect contemporain majeur des migrations dans la province de Nador, Université Paul Valéry-Montpellier III .
  • 8. Bouras, E., Jarlan, L., Khabba, S., Er-Raki, S., Dezetter, A., Sghir, F., Tramblay, Y. 2019. Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Scientific reports 9, 19142. https://doi.org/10.1038/s41598-019-55251-2
  • 9. De Martonne, E. 1923. Aridité et indices d’aridité. Académie des Sciences. Comptes Rendus 182, 1935-1938 .
  • 10. Değerli Şimşek, S., Çapar, Ö. F., Turhan, E. 2023. Investigation of transition possibilities between drought classifications using standardized precipitation index for wet and dry periods – Lower Seyhan Plain, Türkiye case. Journal of Ecological Engineering 24, 201-209. https://doi.org/10.12911/22998993/161655
  • 11. El Sabri, S. 1995. Approche du phenomene de la croissance urbaine dans le Rif Central (Province d’Al Hoceima, Nord du Maroc): cas du doublet Imzouren-Bni Bouayach. Thèse Doct, van Amsterdam, Faculty of Social and Behavioural Sciences (FMG), Amsterdam, Pays-Bas.
  • 12. Elair, C., Rkha Chaham, K., Hadri, A. 2023. Assessment of drought variability in the Marrakech-Safi region (Morocco) at different time scales using GIS and remote sensing. Water Supply 23, 4592 –4624. https://doi.org/10.2166/ws.2023.283
  • 13. Fan, G., Zhang, Y., He, Y., Wang, K. 2017. Risk assessment of drought in the Yangtze River Delta based on natural disaster risk theory. Discrete Dynamics in Nature and Society 2017. https://doi.org/10.1155/2017/5682180
  • 14. Flach, M., Sippel, S., Gans, F., Bastos, A., Brenning, A., Reichstein, M., Mahecha, M.D. 2018. Contrasting biosphere responses to hydrometeorological extremes: revisiting the 2010 western Russian heatwave. Biogeosciences 15, 6067–6085.
  • 15. Gaaloul, N., Eslamian, S., Katlance, R. 2021. Impacts of climate change and water resources management in the southern mediterranean countries. Water Productivity Journal 1, 51–72. https://doi.org/10.22034/wpj.2020.119476
  • 16. Kazemzadeh, M., Malekian, A. 2016. Spatial characteristics and temporal trends of meteorological and hydrological droughts in northwestern Iran. Natural Hazards 80, 191–210.
  • 17. Laaha, G., Gauster, T., Tallaksen, L.M., Vidal, J.-P., Stahl, K., Prudhomme, C., Heudorfer, B., Vlnas, R., Ionita, M., Van Lanen, H.A. 2017. The European 2015 drought from a hydrological perspective. Hydrology and Earth System Sciences 21, 3001–3024.
  • 18. Larabi, A., El Asri, H., El Hamidi, M., Zhim, S., Faouzi, M. 2020. Climate change trends in Morocco’s Mediterranean & Atlantic Hydraulic Basins: Impacts on water resources. Int J Water Resour Arid Environ 9, 01-20.
  • 19. Li, Y., Johnson, E. J., and Zaval, L. 2011. Local warming: Daily temperature change influences belief in global warming. Psychological science 22, 454-459.
  • 20. Lian, X., Piao, S., Li, L. Z., Li, Y., Huntingford, C., Ciais, P., Cescatti, A., Janssens, I.A., Peñuelas, J., Buermann, W. 2020. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science advances 6, eaax0255.
  • 21. Machrafi, O., Sguigaa, A., Attou, A., Sabir, M., Naimi, M., Chikhaoui, M. 2022. Analysis of the water management system in a mountain territory, the case of the Nekor Watershed, Rif, Morocco. Open Journal of Modern Hydrology 12, 125–154. https://doi.org/10.4236/ojmh.2022.124008
  • 22. Maybank, J., Bonsai, B., Jones, K., Lawford, R., O’brien, E., Ripley, E., Wheaton, E. 1995. Drought as a natural disaster. Atmosphere-Ocean 33, 195–222. https://doi.org/10.1080/07055900.1995.9649532
  • 23. McKee, T.B., Doesken, N.J., Kleist, J. 1993. The relationship of drought frequency and duration to time scales. In “Proceedings of the 8th Conference on Applied Climatology”, 17, 179–183. California.
  • 24. Meliho, M., Khattabi, A., Jobbins, G., Sghir, F. 2020. Impact of meteorological drought on agriculture in the Tensift watershed of Morocco. Journal of Water and Climate Change 11, 1323–1338. https://doi.org/10.2166/WCC.2019.279
  • 25. Modarres, R. 2007. Streamflow drought time series forecasting. Stochastic Environmental Research and Risk Assessment 21, 223–233.
  • 26. Myronidis, D., Ioannou, K., Fotakis, D., Dörflinger, G. 2018. Streamflow and hydrological drought trend analysis and forecasting in Cyprus. Water resources management 32, 1759–1776. DOI: 10.1007/s11269-018-1902-z
  • 27. Nalbantis, I., Tsakiris, G. 2009. Assessment of hydrological drought revisited. Water resources management 23, 881–897. https://doi.org/10.1007/s11269-008-9305-1
  • 28. Okacha, A. 2020. Effet des transformations territoriales et des contraintes climatiques sur les modalites de gestion du risque d’inondation dans le bassin versant de nekkor. Thèse Doct, Abdelmalek Essaadi, Faculté des lettres et sciences humaines de Tétouan, Maroc.
  • 29. Okacha, A., Salhi, A., Arari, K., El Badaoui, K., Lahrichi, K. 2023. Soil erosion assessment using the RUSLE model for better planning: a case study from Morocco. Modeling Earth Systems and Environment, 1–9. https://doi.org/10.1007/s40808-023-01731-4
  • 30. Okacha, A., Salhi, A., Arari, K., El Badaoui, K., Lahrichi, K. 2023. Soil erosion assessment using the RUSLE model for better planning: A case study from Morocco. Modeling Earth Systems and Environment 9, 3721-3729 .
  • 31. Pittelkow, C.M., Linquist, B.A., Lundy, M.E., Liang, X., Van Groenigen, K.J., Lee, J., Van Gestel, N., Six, J., Venterea, R.T., Van Kessel, C. 2015. When does no-till yield more? A global meta-analysis. Field crops research 183, 156–168. https://doi.org/10.1016/j.fcr.2015.07.020
  • 32. Polevoy, A., Barsukova, O., Husieva, K., Zhygailo, O., Volvach, O., Kyrnasivska, N., Tolmachova, A., Zhygailo, T., Danilova, N., Kostiukievych, T. 2024. The climate change impact on the development of droughts in Ukraine. Journal of Ecological Engineering 25, 194–205. https://doi.org/10.12911/22998993/187276
  • 33. Qaisrani, A., Umar, M.A., Siyal, G.E.A., Salik, K.M. 2018. What defines livelihood vulnerability in rural semi-arid areas? Evidence from Pakistan. Earth Systems and Environment 2, 455–475
  • 34. Rahmani, F., Fattahi, M.H. 2024. Investigation of alterations in droughts and floods patterns induced by climate change. Acta Geophysica 72, 405–418. https://doi.org/10.1007/s11600-023-01043-2
  • 35. Redner, S., and Petersen, M.R. 2006. Role of global warming on the statistics of record-breaking temperatures. Physical Review E 74, 061114.
  • 36. Saifullah, M., Liu, S., Adnan, M., Zaman, M., Muhammad, S., Babur, M., Zhu, Y., Wu, K. 2021. Assessment of spatial and temporal pattern of hydrological droughts in the upper indus basin, Pakistan. Polish Journal of Environmental Studies 30, 4633–4645.
  • 37. Salhi, A., Martin-Vide, J., Benhamrouche, A., Benabdelouahab, S., Himi, M., Benabdelouahab, T., Casas Ponsati, A. 2019. Rainfall distribution and trends of the daily precipitation concentration index in northern Morocco: A need for an adaptive environmental policy. SN Applied Sciences 1, 1–15. https://doi.org/10.1007/s42452-019-0290-1
  • 38. Serrano, S.V., Begueria, S., Moreno, J.L. 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate 23, 1696–1718.
  • 39. Snaibi, W., Mezrhab, A., Sy, O., Morton, J.F. 2021. Perception and adaptation of pastoralists to climate variability and change in Morocco’s arid rangelands. Heliyon 7. https://doi.org/10.1016/j.heliyon.2021.e08434
  • 40. Sridhar, V., Hubbard, K.G., You, J., Hunt, E.D. 2008. Development of the soil moisture index to quantify agricultural drought and its “user friendliness” in severity-area-duration assessment. Journal of Hydrometeorology 9, 660–676.
  • 41. Staudinger, M., Stahl, K., Seibert, J. 2014. A drought index accounting for snow. Water Resources Research 50, 7861–7872. https://doi.org/10.1002/2013WR015143
  • 42. Suarez, M.L., Kitzberger, T. 2008. Recruitment patterns following a severe drought: Long-term compositional shifts in Patagonian forests. Canadian Journal of Forest Research 38, 3002–3010.
  • 43. Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geographical review 38, 55–94.
  • 44. Trigo, R.M., Palutikof, J.P. 2001. Precipitation scenarios over Iberia: A comparison between direct GCM output and different downscaling techniques. Journal of Climate 14, 4422–4446.
  • 45. Van Lanen, H.A., Laaha, G., Kingston, D.G., Gauster, T., Ionita, M., Vidal, J.-P., Vlnas, R., Tallaksen, L.M., Stahl, K., Hannaford, J. 2016. Hydrology needed to manage droughts: the 2015 European case. Hydrological Processes 30, 3097–3104. https://dx.doi.org/10.1002/hyp.10838
  • 46. Van Loon, A.F., Ploum, S., Parajka, J., Fleig, A., Garnier, E., Laaha, G., Van Lanen, H. 2015. Hydrological drought types in cold climates: quantitative analysis of causing factors and qualitative survey of impacts. Hydrology and Earth System Sciences 19, 1993–2016. https://doi.org/10.5194/hess-19-1993-2015
  • 47. Van Loon, A.F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., Gleeson, T., Van Dijk, A.I., Tallaksen, L.M., Hannaford, J. 2016. Drought in a human-modified world: Reframing drought definitions, understanding, and analysis approaches. Hydrology and Earth System Sciences 20, 3631–3650. https://doi.org/10.5194/hess-20-3631-2016
  • 48. Yilmaz, B. 2019. Analysis of hydrological drought trends in the gap region (Southeastern Turkey) by Mann-Kendall test and innovative Şen method. Applied Ecology & Environmental Research 17. http://dx.doi.org/10.15666/aeer/1702_33253342
  • 49. Zahour, M. 2021. Food security in Morocco: Risk factors and governance. Emerging Challenges to Food Production and Security in Asia, Middle East, and Africa: Climate risks and resource scarcity, 149– 170. https://doi.org/10.1007/978-3-030-72987-5_6
  • 50. Zaidman, M., Rees, H., Young, A. 2002. Spatiotemporal development of streamflow droughts in north-west Europe. Hydrology and Earth System Sciences 6, 733–751
  • 51. Zhou, S., Wang, Y., Chang, J., Su, H., Huang, Q., Li, Z. 2024. Quantifying the effects of future environmental changes on water supply and hydropower generation benefits of cascade reservoirs in the Yellow River Basin within the framework of reservoir water supply and demand uncertainty. Journal of Hydrology: Regional Studies 52, 101729. https://doi.org/10.1016/j.ejrh.2024.101729
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb2c48f8-a0d8-4db5-83cb-e6b3d7482421
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.