Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy
Języki publikacji
Abstrakty
This work presents results of investigations on biotrickling filtration of air polluted with cyclohexane co-treated in binary, ternary and quaternary volatile organic compounds (VOCs) mixtures, including vapors of hexane, toluene and ethanol. The removal of cyclohexane from a gas mixture depends on the physicochemical properties of the co-treated VOCs and the lower the hydrophobicity of the VOC, the higher the removal efficiency of cyclohexane. In this work, the performance of biotrickling filters treating VOCs mixtures is discussed based on surface tension of trickling liquid for the first time. A mixed natural – synthetic packing for biotrickling filters was utilized, showing promising performance and limited maintenance requirements. Maximum elimination capacity of about 95 g/(m 3·h) of cyclohexane was reached for the total VOCs inlet loading of about 450 g/(m 3·h). This work presents also a novel approach of combining biological air treatment with management of a spent trickling liquid in the perspective of circular economy assumptions. The waste liquid phase was applied to the plant cultivation, showing a potential for e.g. enhanced production of energetic biomass or polluted soil phytoremediation.
Rocznik
Tom
Strony
art. no. e40
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
autor
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, Narutowicza 11/12, Poland
autor
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, Narutowicza 11/12, Poland
autor
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, Narutowicza 11/12, Poland
autor
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, Narutowicza 11/12, Poland
autor
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, 80-233 Gdańsk, Narutowicza 11/12, Poland
Bibliografia
- 1. Abubackar H.N., Veiga M.C., Kennes C., Das J., Rene E.R., van Hullebusch E.D., 2019. 2.31 – Gas-phase bioreactors, In: Moo-Young M. (Ed.), Comprehensive Biotechnology (Third edition). Pergamon, 2, 446–463. DOI: 10.1016/B978-0-444-64046-8.00142-7.
- 2. Antonkiewicz J. (Ed.), 2021. Przewodnik do ćwiczeń z chemii rolnej. Publishing House of the University of Agriculture in Krakow.
- 3. Barbusinski K., Kalemba K., Kasperczyk D., Urbaniec K., Kozik V., 2017. Biological methods for odor treatment – a review. J. Clean. Prod., 152, 223–241. DOI: 10.1016/J.JCLEPRO.2017. 03.093.
- 4. Botros M.M., Hassan A.A., Sorial G.A., Botros M.M., 2017. Role of fungal biomass in n-hexane biofiltration. Adv. Microbiol., 7, 673–688. DOI: 10.4236/AIM.2017.710053.
- 5. Cabrera G., Almenglo F., Ramírez M., Cantero D., 2019. 2.30 – Biofilters, In: Moo-Young M. (Ed.), Comprehensive Biotechnology (Third Edition). Pergamon, 428–445. DOI: 10.1016/B978-0-444-64046-8.00082-3.
- 6. Cheng Y., He H., Yang C., Zeng G., Li X., Chen H., Yu G., 2016. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnol. Adv., 34, 1091–1102. DOI: 10.1016/j.biotechadv.2016.06.007.
- 7. Cheng Y., Li X., Liu H., Yang C., Wu S., Du C., Nie L., Zhong Y., 2020. Effect of presence of hydrophilic volatile organic compounds on removal of hydrophobic n-hexane in biotrickling filters. Chemosphere, 252, 126490. DOI: 10.1016/j.chemosphere.2020.126490.
- 8. Chheda D., Sorial G.A., 2016. Effect of a ternary mixture of volatile organic compounds on degradation of TCE in biotrickling filter systems. Water Air Soi Pollut., 227, 246. DOI: 10.1007/s11270-016-2950-8.
- 9. Chuang F.-J., Chou M.-S., Chang H.-Y., 2018. Biotrickling filtration of airborne styrene: a comparison of filtration media. J. Air Waste Manage. Assoc., 68, 369–376. DOI: 10.1080/ 10962247.2017.1416002.
- 10. Cox C.D., Woo H.-J., Robinson K.G., 1998. Cometabolic biodegradation of trichloroethylene (TCE) in the gas phase. Water Sci. Technol., 37, 97–104. DOI: 10.1016/S0273-1223 (98)00239-X.
- 11. Dobrzyniewski D., Szulczyński B., Rybarczyk P., Gębicki J., 2023. Process control of air stream deodorization from vapors of VOCs using a gas sensor matrix conducted in the biotrickling filter (BTF). Arch. Environ. Prot., 49, 85–94. DOI: 10.24425/AEP.2023.145900.
- 12. Dobslaw D., Woiski C., WinkleK.-H., Dobslaw C., 2018. Prevention of clogging in a polyurethane foam packed biotrickling filter treating emissions of 2-butoxyethanol. J. Cleaner Prod., 200, 609–621. DOI: 10.1016/J.JCLEPRO.2018.07.248.
- 13. Dou X., Liu J., Qi H., Li P., Lu S., Li J., 2022. Synergistic removal of m-xylene and its corresponding mechanism in a biotrickling filter. Process Biochem., 118, 404–412. DOI: 10.1016/J.PROCBIO.2022.05.010.
- 14. Dumont E., Da Silva Cabral F., Le Cloirec P., Andrès Y., 2013. Biofiltration using peat and a nutritional synthetic packing material: influence of the packing configuration on H2S removal. Environ. Technol., 34, 1123–1129. DOI: 10.1080/09593330.2012.736691.
- 15. González-Martín J., Cantera S., Lebrero R., Muñoz R., 2023. Biofiltration based on bioactive coatings for the abatement of indoor air VOCs. Sustainable Chem. Pharm., 31, 100960. DOI: 10.1016/j.scp.2022.100960.
- 16. Gospodarek M., Rybarczyk P., Szulczyński B., Gębicki J., 2019. Comparative evaluation of selected biological methods for the removal of hydrophilic and hydrophobic odorous VOCs from air. Processes, 7, 187. DOI: 10.3390/pr7040187.
- 17. Gribbins M.J., Loehr R.C., 1998. Effect of media nitrogen con- centration on biofilter performance. J. Air Waste Manage. Assoc., 48, 216–226. DOI: 10.1080/10473289.1998.10463676.
- 18. Guisasola A., Vargas M., Marcelino M., Lafuente J., Casas C. Baeza J.A., 2007. On-line monitoring of the enhanced biological phosphorus removal process using respirometry and titrimetry. Biochem. Eng. J., 35, 371–379. DOI: 10.1016/J.BEJ.2007. 02.001.
- 19. Hammes F., Velten S., Egli T., Juhna T., 2011. 6.36 – Biotreatment of drinking water, In: Moo-Young M. (Ed.), Comprehensive Biotechnology (Third edition). Pergamon, 6, 463–476. DOI: 10.1016/B978-0-444-64046-8.00374-8.
- 20. He S., Ni Y., Lu L., Chai Q., Liu H., Yang C., 2019. Enhanced biodegradation of n-hexane by Pseudomonas sp. strain NEE2. Sci. Rep., 9, 16615. DOI: 10.1038/s41598-019-52661-0.
- 21. Jiménez L., Arriaga S., Muñoz R., Aizpuru A., 2017. Effect of extended and daily short-term starvation/shut-down events on the performance of a biofilter treating toluene vapors. J. Environ. Manage., 203, 68–75. DOI: 10.1016/j.jenvman.2017.07.057.
- 22. Khoramfar S., Jones K.D., Boswell J., Ghobadi J., Paca J., 2018. Evaluation of a sequential biotrickling–biofiltration unit for removal of VOCs from the headspace of crude oil storage tanks. J. Chem. Technol. Biotechnol., 93, 1778–1789. DOI: 10.1002/JCTB.5556.
- 23. Kormanek M., Małek S., Banach J., Durło G., Jagiełło-Leńczuk K., Dudek K., 2021. Seasonal changes of perlite-peat substrate properties in seedlings grown in different sized container trays. New For., 52, 271–283. DOI: 10.1007/s11056-020- 09793-3.
- 24. Lamprea Pineda P.A., Demeestere K., Toledo M., Van Langenhove H., Walgraeve C., 2021. Enhanced removal of hydrophobic volatile organic compounds in biofilters and biotrickling filters: a review on the use of surfactants and the addition of hydrophilic compounds. Chemosphere, 279, 130757. DOI: 10.1016/j.chemosphere.2021.130757.
- 25. Lebrero R., Rodríguez E., Collantes M., De Juan Alvarez C., Norden G., Rosenbom K., Muñoz R., 2021. Comparative performance evaluation of commercial packing materials for malodorants abatement in biofiltration. Appl. Sci., 11, 2966. DOI: 10.3390/APP11072966.
- 26. Lee S.-H., Kurade M.B., Jeon B.-H., Kim J., Zheng Y., Salama E.-S., 2021. Water condition in biotrickling filtration for the efficient removal of gaseous contaminants. Crit. Rev. Biotechnol., 41, 1279–1296. DOI: 10.1080/07388551.2021.1917506.
- 27. Li K., Zhou J., Wang L., Mao Z., Xu R., 2019. The styrene purification performance of biotrickling filter with toluene-styrene acclimatization under acidic conditions. J. Air Waste Manage. Assoc., 69, 944–955. DOI: 10.1080/10962247.2019.1604450.
- 28. López L.R., Mora M., Baeza J.A., Lafuente J., Gabriel D., 2019. Titrimetry as a tool for the on-line monitoring of biological activity in a desulfurizing biotrickling filter under aerobic conditions. Process Saf. Environ. Prot., 124, 151–157. DOI: 10.1016/J.PSEP.2019.02.010.
- 29. Marcinek J., Komisarek J. (Eds.), 2011. Roczniki Gleboznawcze. Soil Science Annual. 62(3). Wydawnictwo “Wieś Jutra”, Warszawa.
- 30. Markoska V., Spalevic V., Gulaboski R., 2018. A research on the influence of porosity on perlite substrate and its interaction on porosity of two types of soil and peat substrate. Agric. For., 64, 15–29. DOI: 10.17707/agricultforest.64.3.02.
- 31. Marycz M., Brillowska-Dąbrowska A., Cantera S., Gębicki J., Muñoz R., 2023. Fungal co-culture improves the biodegradation of hydrophobic VOCs gas mixtures in conventional biofilters and biotrickling filters. Chemosphere, 313, 137609. DOI: 10.1016/j.chemosphere.2022.137609.
- 32. Marycz M., Rodríguez Y., Gębicki J., Muñoz R., 2022. Systematic comparison of a biotrickling filter and a conventional filter for the removal of a mixture of hydrophobic VOCs by Candida subhashii. Chemosphere, 306, 135608. DOI: 10.1016/j.chemosphere.2022.135608.
- 33. Meena V., Rajendran L., Kumar S., Jansi Rani P.G., 2016. Mathematical modeling of gas phase and biofilm phase biofilter performance. Egypt. J. Basic Appl. Sci., 3, 94–105. DOI: 10.1016/j.ejbas.2015.09.007.
- 34. Mudliar S., Giri B., Padoley K., Satpute D., Dixit R., Bhatt P., Pandey R., Juwarkar A., Vaidya A., 2010. Bioreactors for treatment of VOCs and odours – a review. J. Environ. Manage., 91, 1039–1054. DOI: 10.1016/j.jenvman.2010.01.006.
- 35. Nagendranatha Reddy C., Bae S., Min B., 2019. Biological re- moval of H2S gas in a semi-pilot scale biotrickling filter: optimization of various parameters for efficient removal at high loading rates and low pH conditions. Bioresour. Technol., 285, 121328. DOI: 10.1016/j.biortech.2019.121328.
- 36. Pachaiappan R., Cornejo-Ponce L., Rajendran R., Manavalan K., Femilaa Rajan V., Awad F., 2022. A review on biofiltration techniques: recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water. Bioengineered, 13, 8432–8477. DOI: 10.1080/21655979.2022.2050538.
- 37. Revah S., Morgan-Sagastume J.M., 2005. Methods of odor and VOC control, In: Shareefdeen Z., Singh A. (Eds), Biotechnology for Odor and Air Pollution Control. Springer, Berlin, Heidelberg; 29–63. DOI: 10.1007/3-540-27007-8_3.
- 38. Rodriguez G., Dorado A.D., Fortuny M., Gabriel D., Gamisans X., 2014. Biotrickling filters for biogas sweetening: oxygen transfer improvement for a reliable operation. Process Saf. Environ. Prot., 92, 261–268. DOI: 10.1016/j.psep.2013.02.002.
- 39. Rybarczyk P., 2022. Removal of volatile organic compounds (VOCs) from air: focus on biotrickling filtration and process modeling. Processes, 10, 2531. DOI: 10.3390/PR10122531.
- 40. Rybarczyk P., Marycz M., Szulczyński B., Brillowska-Dąbrowska A., Rybarczyk A., Gębicki J., 2021. Removal of cyclohexane and ethanol from air in biotrickling filters inoculated with Candida albicans and Candida subhashii. Arch. Environ. Prot., 47, 26– 34. DOI: 10.24425/aep.2021.136445.
- 41. Rybarczyk P., Szulczyński B., Gębicki J., 2020. Simultaneous removal of hexane and ethanol from air in a biotrickling filterprocess performance and monitoring using electronic nose. Sustainability, 12, 387. DOI: 10.3390/su12010387.
- 42. Rybarczyk P., Szulczyński B., Gębicki J., Hupka J., 2019. Treatment of malodorous air in biotrickling filters: a review. Biochem. Eng. J., 141, 146–162. DOI: 10.1016/j.bej.2018.10.014.
- 43. Salamanca D., Dobslaw D., Engesser K.-H., 2017. Removal of cyclohexane gaseous emissions using a biotrickling filter system. Chemosphere, 176, 97–107. DOI: 10.1016/j.chemosphere.2017.02.078.
- 44. Sander R., 2015. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys., 15, 4399–4981. DOI: 10.5194/acp-15-4399-2015.
- 45. San-Valero P., Penya-Roja J.M., Álvarez-Hornos F.J., Gabaldón C., 2014. Modelling mass transfer properties in a biotrickling filter for the removal of isopropanol. Chem. Eng. Sci., 108, 47–56. DOI: 10.1016/J.CES.2013.12.033.
- 46. San-Valero P., Penya-Roja J.M., Álvarez-Hornos F.J., Marzal P., Gabaldón C., 2015. Dynamic mathematical modelling of the removal of hydrophilic VOCs by biotrickling filters. Int. J. Environ. Res. Public Health, 12, 746–766. DOI: 10.3390/ijerph120100746.
- 47. Sarkar P., Tiwari H., Garkoti P., Neogi S., Biswas J.K., Dey A., 2022. Chapter 24 – Biofiltration as a green technology for abatement of volatile organic compounds (VOCs): A synoptic review, In: Shah M., Rodriguez-Couto S., Biswas J. (Eds.),
- 48. An innovative role of biofiltration in wastewater treatment plants (WWTPs). Elsevier, 477–496. DOI: 10.1016/B978-0-12-823946-9.00019-X.
- 49. Schlegelmilch M., Streese J., Stegmann R., 2005. Odour management and treatment technologies: an overview. Waste Manage., 25, 928–939. DOI: 10.1016/j.wasman.2005.07.006.
- 50. Sheoran K., Siwal S.S., Kapoor D., Singh N., Saini A.K., Alsanie W.F., Thakur V.K., 2022. Air pollutants removal using biofiltration technique: a challenge at the frontiers of sustainable environment. ACS Eng., 2, 378–396. DOI: 10.1021/acsengineeringau.2c00020.
- 51. Sun Z., Yang B., Wang L., Ding C., Li Z., 2017. Toluene-styrene secondary acclimation improved the styrene removal ability of biotrickling filter. Chem. Speciation Bioavailability, 29, 54–59. DOI: 10.1080/09542299.2017.1301219.
- 52. Tambone F., Genevini P., Adani F., 2013. The effects of shortterm compost application on soil chemical properties and on nutritional status of maize plant. Compost Sci. Util., 15, 176– 183. DOI: 10.1080/1065657x.2007.10702330.
- 53. Vikrant K., Kim K.-H., Szulejko J.E., Pandey S.K., Singh R.S., Giri B.S., Brown R.J.C., Lee S.-H., 2017. Bio-filters for the treatment of VOCs and odors – A review. Asian J. Atmos. Environ., 11, 139–152. DOI: 10.5572/AJAE.2017.11.3.139.
- 54. Wu X., Lin Y., Wang Y., Wu S., Li X., Yang C., 2022. Enhanced removal of hydrophobic short-chain n-alkanes from gas streams in biotrickling filters in presence of surfactant. Environ. Sci. Technol., 56, 10349–10360. DOI: 10.1021/acs.est.2c02022.
- 55. Wu X., Lin Y., Wang Y., Yang C., 2023. Interactive effects of dual short-chain n-alkanes on removal performances and microbial responses of biotrickling filters. Chem. Eng. J., 461, 141747. DOI: 10.1016/J.CEJ.2023.141747.
- 56. Yang C., Qian H., Li X., Cheng Y., He H., Zeng G., Xi J., 2018. Simultaneous removal of multicomponent VOCs in biofilters. Trends Biotechnol., 36, 673–685. DOI: 10.1016/j.tibtech.2018.02.004.
- 57. Yoshikawa M., Zhang M., Toyota K., 2017. Biodegradation ofvolatile organic compounds and their effects on biodegradability under co-existing conditions. Microbes Environ., 32, 188–200. DOI: 10.1264/JSME2.ME16188.
- 58. Zehraoui A., Hassan A.A., Sorial G.A., 2012. Effect of methanol on the biofiltration of n-hexane. J. Hazard. Mater., 219–220, 176–182. DOI: 10.1016/j.jhazmat.2012.03.075.
- 59. Zhang Y., Liu J., Li J., Yue T., 2021. Effects of filler voidage on pressure drop and microbial community evolution in fungal bio-trickling filters. Chemosphere, 273, 129710. DOI: 10.1016/j.chemosphere.2021.129710.
- 60. Zhanga Y., Denga W., Qina Y., Yanga Z., Liua J., Lia J., 2018. Research on simultaneous removal of cyclohexane and methyl acetate in biotrickling filters. Proceedings of the 2nd Internaional Conference of Recent Trends in Environmental Science and Engineering (RTESE’18), Niagara Falls, Canada, 10–12 June 2018, 107. DOI: 10.11159/rtese408.107.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb2b150d-4410-4c70-a902-5bfe8f7ad4d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.