PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Inter occurrence time statistics of successive large earthquakes: analyses of the global CMT dataset

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to discuss the statistical distributions of the inter-occurrence times of successive large earthquakes. We examine the Global Centroid Moment Tensor Catalog from 1976 to 2021 to analyze shallow earthquakes with a moment magnitude, Mw ≥ 7.0. After removing the aftershocks that occur in and around the faults of the mainshock within a given time–space window, we select the main events and search for successive ones in the space–time window to group them in clusters. We use four renewal models (Brownian passage time, gamma, lognormal, and Weibull) to fit the data. We estimate the models’ parameters using the maximum likelihood estimation method. Then, we perform two goodness-of-fit tests: the Akaike information criterion and the Kolmogorov–Smirnov test to evaluate the suitability of the model distributions to the observed data. The results reveal that the lognormal distribution provides the best fit to the observed data in at least 50% of the regions under consideration. An intermediate fit comes from the Weibull distribution, whereas the Brownian passage time and gamma distributions exhibit a poor fit. Then, we estimated the conditional probability of the occurrence of successive large earthquakes for the 10-year period between 2022 and 2032. Estimates range from 16 to 96%. To evaluate the usefulness of the interevent time-dependent earthquake modeling, we compared the results with the time-independent Poisson distribution. The results show that the renewal model, associated with a time-dependent earthquake hazard, is significantly better than a time-independent Poisson model.
Czasopismo
Rocznik
Strony
2603--2619
Opis fizyczny
Bibliogr. 64 poz.
Twórcy
  • Research Center for Prediction of Earthquakes and Volcanic Eruptions, Graduate School of Science, Tohoku University, 6-6 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8578, Japan
  • Department of Physics, Faculty of Science, University of Kinshasa, 1 Avenue de l'Université, Kinshasa, P.O. 190, Democratic Republic of Congo
Bibliografia
  • 1. Abaimov SG, Turcotte D, Shcherbakov R, Rundle JB, Yakovlev G, Goltz C, Newman WI (2008) Earthquakes: recurrence and interoccurrence times. Pure Appl Geoph 165:777
  • 2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723
  • 3. Aldrich J (1997) RA Fisher and the making of maximum likelihood 1912–1922. Stat Sci 12(3):162–176
  • 4. Anagnos T, Kiremidjian AS (1988) A review of earthquake occurrence models for seismic hazard analysis. Probab Eng Mech 3(1):3–11
  • 5. Akinci A, Paerkins D, Lombardi AM, Basili R (2010) Uncertainties in probability of occurrence of strong earthquakes for fault sources in the Central Apennines, Italy. J Seismol 14:95–117. https://doi.org/10.1007/s10950-008-9142-y
  • 6. Bantidi TM, Nishimura T (2022) Spatio-temporal clustering of successive earthquakes as inferred from analyses of global CMT and NIED F-net catalogs. Earth Planets Space 74(1):117. https://doi.org/10.1186/s40623-022-01677-4
  • 7. Bowers NL, Gerber HU, Hickman JC, Jones DA, Nesbitt CJ (1997) Actuarial mathematics, 2nd edn. Society of Actuaries, Schaumburg
  • 8. Bray A, Schoenberg FP (2013) Assessment of point process models for earthquake forecasting. Stat Sci 28(4):510–520
  • 9. Chhikara RS, Folks JL (1977) The inverse Gaussian distribution as a lifetime model. Technometrics 19(4):461–468
  • 10. Console R, Murru, M, Falcone G (2017) Earthquake occurrence: short-and long-term models and their validation. Wiley
  • 11. Console R, Murru M, Falcone G, Catalli F (2008) Stress interaction effect on the occurrence probability of characteristic earthquakes in Central Apennines. J Geophys Res 113:B08313
  • 12. Console R, Parsons T, Falcone G, Murru M, Yamashina KI (2018) Comments on ‘Why is Probabilistic Seismic Hazard Analysis (PSHA) still used?’ by F. Mulargia, PB Stark and RJ Geller. Physics of the Earth and Planetary Interiors
  • 13. Cornell CA, Winterstein SR (1988) Temporal and magnitude dependence in earthquake recurrence models. Bull Seismol Soc Am 78(4):1522–1537
  • 14. Dziewonski AM (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86(2825–2852):1981. https://doi.org/10.1029/JB086iB04p02825
  • 15. Earthquake Research Committee of the Headquarters for Earthquake Research Promotion (2013) Long-term evaluation of nankai trough earthquake activity. 2nd edn. http://www.jishin.go.jp/main/chousa/13may_nankai/nankai2_shubun.pdf
  • 16. Ekström GM (2012) The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200–201(1–9):2012. https://doi.org/10.1016/j.pepi.2012.04.002
  • 17. Ellsworth WL, Matthews MV, Nadeau RM, Nishenko SP, Reasenberg PA, Simpson RW (1999) A physically based earthquake recurrence model for estimation of long-term earthquake probabilities: U. S. Geological Survey, OFR 99-522, p 23
  • 18. Ferraes SG (2003) The conditional probability of earthquake occurrence and the next large earthquake in Tokyo, Japan. J Seismolog 7(2):145–153
  • 19. Field EH, Johnson DD, Dolan JF (1999) A mutually consistent seismic-hazard source model for Southern California. Bull Seismol Soc Am 89(3):559–578
  • 20. Field EH (2007) Overview of the working group for the development of Regional Earthquake Likelihood Models (RELM). Seismol Res Lett 78(1):7–16. https://doi.org/10.1785/gssrl.78.1.7
  • 21. Garcia-Aristizabal A, Marzocchi W, Fujita E (2012) A Brownian model for recurrent volcanic eruptions: an application to Miyakejima volcano (Japan). Bull Volcanol 74(2):545–558
  • 22. Goda K, Campbell G, Hulme L, Ismael B, Ke L, Marsh R, Sammonds P, So E, Okumura Y, Kishi N, Yotsui S, Kiyono J, Wu S, Wilkinson S (2016) The 2016 Kumamoto earthquakes: Cascading Geological Hazards and Compounding Risks. Front Built Environ 2:19. https://doi.org/10.3389/fbuil.2016.00019
  • 23. González A, Gomez JB, Pacheco AF (2006) Updating seismic hazard at Parkfield. J Seismol 10(2):131–135
  • 24. Hagiwara Y (1974) Probability of earthquake occurrence as obtained from a Weibull distribution analysis of crustal strain. Tectonophys 23(3):313–318
  • 25. Hristopulos D, Mouslopoulou V (2013) A stochastic stick-slip model linking crustal shear strength and earthquake interevent times. Physica A 392:485–496. https://doi.org/10.1016/j.physa.2012.09.011
  • 26. Hristopulos DT, Manolis PP, Kaniadakis G (2014) Finite-size effects on return interval distributions for weakest-link-scaling systems. Phys Rev E 89:052142. https://doi.org/10.1103/PhysRevE.89.052142
  • 27. Ishibe T, Shimazaki K (2008) The Gutenberg–Richter relationship vs. the characteristic earthquake model: effects of different sampling methods. Bull Earthq Res Inst Univ Tokyo 83:131–151
  • 28. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, volume 2, vol 289. Wiley
  • 29. Jordan TH (2006) Earthquake predictability, brick by brick. Seism Res Lett 77:3–6
  • 30. Jordan TH, Jones LM (2010) Operational earthquake forecasting: some thoughts on why and how. Seis Res Lett 81:571–574
  • 31. Kolmogorov A (1933) Sulla determinazione empirica di una lgge di distribuzione. Inst Ital Attuari Giorn 4:83–91
  • 32. Kourouklas C, Console R, Papadimitriou E, Murru M, Karakostas V (2021) Strong earthquakes recurrence times of the Southern Thessaly, Greece, fault system: insights from a physics based simulator application. Front Earth Sci 9:596854. https://doi.org/10.3389/feart.2021.596854
  • 33. Marsan D, Enescu B (2012) Modeling the foreshock sequence prior to the 2011, MW9.0 Tohoku, Japan, earthquake. J Geophys Res 117:B06316. https://doi.org/10.1029/2011JB009039
  • 34. Matthews MV, Ellsworth WL, Reasenberg PA (2002) A Brownian model for recurrent earthquakes. Bull Seismol Soc Am 92(6):2233–2250
  • 35. Mogi K (1985) Earthquake prediction. New York
  • 36. Mulargia F, Stark PB, Geller RJ (2017) Why is probabilistic seismic hazard analysis (PSHA) still used? Phys Earth Planet Inter 264:63–75
  • 37. Nishenko SP, Buland R (1987) A generic recurrence interval distribution for earthquake forecasting. Bull Seismol Soc Am 77:1382–1399
  • 38. Nomura S, Ogata Y, Komaki K, Toda S (2011) Bayesian forecasting of recurrent earthquakes and predictive performance for a small sample size. J Geophys Res 116:B04315. https://doi.org/10.1029/2010JB007917
  • 39. Ogata Y (1999) Estimating the hazard of rupture using uncertain occurrence times of paleo earthquakes. J Geophys Res Solid Earth 104(B8):17995–18014
  • 40. Okuwaki R, Fan W (2022) Oblique convergence causes both thrust and strike-slip ruptures during the 2021 M 7.2 Haiti earthquake. Geophys Res Lett. https://doi.org/10.1029/2021GL096373
  • 41. Okada M, Uchida N, Aoki S (2012) Statistical forecasts and tests for small interplate repeating earthquakes along the Japan Trench. Earth Planets Space 64:703–715
  • 42. Parsons T (2002) Global Omori law decay of triggered earthquakes: large aftershocks outside the classical aftershock zone. J Geophys Res 107(B9):2199. https://doi.org/10.1029/2001JB000646
  • 43. Parsons T (2008) Earthquake recurrence on the south Hayward fault is most consistent with a time-dependent, renewal process. Geophys Res Lett 36:L21301. https://doi.org/10.1029/2008GL035887
  • 44. Pasari S, Dikshit O (2014) Three-parameter generalized exponential distribution in earthquake recurrence interval estimation. Nat Hazards 73:639–656. https://doi.org/10.1007/s11069-014-1092-9
  • 45. Pasari S, Dikshit O (2018) Stochastic earthquake interevent time modeling from exponentiated Weibull distributions. Nat Hazards 90:823–842. https://doi.org/10.1007/s11069-017-3074-1
  • 46. Pasari S (2018) Stochastic modelling of earthquake interoccurrence times in Northwest Himalaya and adjoining regions. Geomat Nat Haz Risk 9(1):568–588. https://doi.org/10.1080/19475705.2018.1466730
  • 47. Pasari S (2019) Inverse Gaussian versus lognormal distribution in earthquake forecasting: keys and clues. J Seismolog 23(3):537–559
  • 48. Patel JK, Kapadia CH, Owen DB (1976) Handbook of statistical distributions. Marcel Dekker, New York
  • 49. Pawlowicz R (2020) M_Map: a mapping package for MATLAB, version 1.4m, Computer software. www.eoas.ubc.ca/~rich/map.html.
  • 50. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes. The art of scientific computing, 3rd edn. Cambridge University Press
  • 51. Reasenberg PA (1999) Foreshock occurrence before large earthquakes. J Geophys Res Solid Earth 104(B3):4755–4768
  • 52. Rikitake T (1976) Recurrence of great earthquakes at subduction zones. Tectonophysics 35(4):335–362
  • 53. Scharer KM, Biasi GP, Weldon RJ, Furmal TE (2010) Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault. Geology 38:555–558
  • 54. Schorlemmer D, Gerstenberger MC (2007) RELM testing center. Seismol Res Lett 78:30–36. https://doi.org/10.1785/gssrl.78.1.30
  • 55. Schwartz DP, Coppersmith KJ (1984) Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones. J Geophys Res Solid Earth 89(B7):5681–5698
  • 56. Seshadri V (1999) The inverse Gaussian distribution, statistical theory and applications. Lecture notes in statistics, vol 137. Springer, New York
  • 57. Sornette D, Knopoff L (1997) The paradox of the expected time until the next earthquake. Bull Seismol Soc Am 87(4):789–798
  • 58. Takagi K, Kumagai S, Matsunaga I, Kusaka Y (1997) Application of inverse Gaussian distribution to occupational exposure data. Ann Occup Hyg 41(5):505–514
  • 59. Uchida N (2019) Detection of repeating earthquakes and their application in characterizing slow fault slip. Prog Earth Planet Sci. https://doi.org/10.1186/s40645-019-0284-z
  • 60. Udias A, Rice J (1975) Statistical analysis of microearthquake activity near San Andreas geophysical observatory, Hollister, California. Bull Seismol Soc Am 65(4):809–827
  • 61. U.S. Geological Survey (2021) https://www.usgs.gov/
  • 62. Utsu T, Seki (1954) A relation between the area of after-shock region and the energy of main shock. Seismol Soc Jpn J 7:233–240
  • 63. Working Group on California Earthquake Probabilities (2003) Earthquake Probabilities in the San Francisco Bay Region: 2002–2031, United States Geological Survey Open-File Report 03-214
  • 64. Zhuang J, Harte D, Werner MJ, Hainzl S, Zhou S (2012) Basic models of seismicity: temporal models. Community Online Resour Stat Seism Anal. https://doi.org/10.5078/corssa-79905851
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb2ab619-5b09-46ba-aef9-6c7dc8e7677a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.