PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFGFRPT piles with a circular cross-section and their application in offshore structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibilities of using concrete piles in a polymer composite reinforced with glass fibres in offshore facilities were shown. Laboratory tests of CFGFRPT type piles compressed axially and in eccentric compression for the analysis of CFGFRPT piles were used. Methods of analysis of dynamic systems for mathematical modelling of the displacement of the hammer in the pile driving process were applied. The possibilities of combining CFGFRPT piles, including the creation of hybrid piles were also presented. For example, concrete piles can be combined with concrete piles in a polymer composite reinforced with glass fibres with different fibre beam angles. The possibilities of using such hybrid piles in offshore facilities were indicated.
Rocznik
Tom
Strony
127--137
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Gdańsk University of Technology Narutowicza 11/12 80-233 Gdansk Poland
  • Gdańsk University of Technology Narutowicza 11/12 80-233 Gdansk Poland
  • Gdańsk University of Technology Narutowicza 11/12 80-233 Gdansk Poland
Bibliografia
  • 1. Abramski, M. Short-time load-carrying capacity of columns with a circular cross-section made of FRP tubes filled with concrete. Experiments, theory, design. Gdansk University of Technology, Gdansk, 2019.
  • 2. Abramski, M., Mieloszyk, E., and Milewska, A. Determination of the shape of the CFGFT cylindrical column based on laboratory tests (in preparation).
  • 3. ASTM. D7258-14: Standard Specification for Polymeric Piles. 2014.
  • 4. Van Eekelen, S.J.M. The 2016-update of the Dutch Design Guideline for Basalt Reinforced Piled Embankments. In Advances in Transportation Geotechnics 3. The 3rd International Conference on Transportation Geotechnics (ICTG 2016). Procedia Engineering, 2016, pp. 582–589.
  • 5. Gwizdała, K. Pile foundation. Technologies and calculations (in Polish). Wydawnictwo Naukowe PWN, Warsaw, 2019.
  • 6. Gwizdała, K. and Kowalski, J. Prefabricated driven piles (in Polish). Gdansk, 2005.
  • 7. Leda, H. Polymer composites with continuous filaments (in Polish). Wydawnictwo Politechniki Poznańskiej, Poznań, 2000.
  • 8. Magda, W. Comparison of soil models in the thermodynamic analysis of a submarine pipeline buried in seabed sediments. Polish Maritime Research, 24, 4 (2017), 124–130.
  • 9. Mazumdar, S.K. Composites Manufacturing: Materials, Product, and Process Engineering. CRC Press, 2002.
  • 10. Mazurkiewicz, B. Encyclopedia of marine engineering (in Polish). Fundacja Promocji Przemysłu Okrętowego i Gospodarki Morskiej. Oficyna Morska., Gdansk, 2009.
  • 11. Meyer, Z. Engineering calculations of settlement on foundations (in Polish). ZAPOL Publishing, Szczecin, 2012.
  • 12. Mieloszyk, E. Operational calculus and the dynamics of mechanics in the civil and hydro – engineering (in Polish). Gdansk University of Technology, Gdansk, 1998.
  • 13. Mieloszyk, E. Non-classical operational calculus in application to generalized dynamical systems (in Polish). Polish Academy of Sciences Scientific Publishers, Gdansk, 2008.
  • 14. Mieloszyk, E. and Grulkowski, S. Analog modeling in qualitative analysis of vibration propagation. Transportation Overview, 9 (2017), 18–21.
  • 15. Mieloszyk, E. and Milewska, A. Modeling of soil interaction using generalized dynamical systems. In 11th Baltic Sea Geotechnical Conference. Geotechnics in Maritime Engineering. Gdansk, 2008, pp. 735–742.
  • 16. Mieloszyk, E., Milewska, A., and Grulkowski, S. Effect of vehicle motion stability after impact / crash on traffic safety. MATEC Web of Conferences, (2018), 1–9.
  • 17. Ochelski, S. Experimental methods in mechanics of fibre composites (in Polish). Wydawnictwa Naukowo-Techniczne, Warsaw, 2004.
  • 18. Puła, W. and Zaskórski, Ł. Estimation of the probability distribution of the random bearing capacity of cohesionless soil using the random finite element method. Structure and Infrastructure Engineering, 11, 5 (2015), 707–720.
  • 19. Sikora, Z. Static probing. Methods and application in geoengineering (in Polish). Wydawnictwa NaukowoTechniczne, Warsaw, 2006.
  • 20. Szypcio, Z. and Dołżyk, K. The bearing capacity of layered subsoil. Studia Geotechnica et Mechanica, 28, 1 (2006), 45–60.
  • 21. Vasiliev, V. and Morozov, E. Mechanics and Analysis of Composite Materials. Elsevier, 2001.
  • 22. Wyroślak, M. Dynamic soil improvement by hybrid technologies. In Geotechnical Engineering for Infrastructure and Development. ICE Publishing, 2015, pp. 1469–1474.
  • 23. Plastics – Guide. Wydawnictwa Naukowo-Techniczne, Warsaw, Poland, 2000.
  • 24. Information and promotion materials of the Lancaster Composite. Select Installations – Port Hadlock, Washington State. 2013. http://www.lancastercomposite.com/ installation08.html.
  • 25. Information and promotion materials of the Lancaster Composite. Lancaster CP40 Pile. Design Guide. Fibreglass/ concrete composite marine piling. 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb2956b7-43b3-450a-8015-a84aac76eb09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.