Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Cell engineering in lab-on-chip systems
Języki publikacji
Abstrakty
Lab-on-a-chip systems are promising tools in the field of cell engineering. Microfluidic systems are integrated microlaboratories consisting of many microstructures such as microchannels and microchambers, which can be used for cell analysis and cell culture. Appropriately designed geometry of the chip allows to mimic in vivo conditions. Microsystems enables continuous culture medium perfusion. During cell culture, regulation of the flow rate of medium is possible, which allows to control conditions of the cultivation. In this paper we present a review of microfluidics systems which are used in cell engineering. We describe methods of microsystems fabrication, parameters which influence cell proliferation in microscale and examples of microsystems for cell analysis and cell culturing. Microfluidic systems for maintaining cell culture are mainly fabricated of poly(dimethylsiloxane) (PDMS) and glass, non-toxic materials for cells. The most commonly used method for fabrication of PDMS microsystems is photolithography and replica molding techniques. Cell culture in microsystems can be carried out in two ways: as a two-dimensional (2D) cell culture and three-dimensional (3D) cell culture. In two-dimensional culture cells grow as a monolayer on a flat surface of microchambers or microchannels. Microsystems for two-dimensional cell culture are widely described in the literature. They are mainly used for: (i) cell proliferation after exposure to external stimuli, (ii) testing the activity of cytotoxic drugs, (iii) interactions and cell migration and (iv) the evaluation of procedures applicable in tumor therapy e. g. photodynamic therapy. However, two-dimensional cell culture do not mimic fully in vivo conditions. In living organisms cells grow spatially creating three-dimensional structures like tissues. Therefore, nowadays microsystems for 3D cell culture are being developed intensively. Three-dimensional cell culture in microfluidic systems can be achieved in three ways: by the design of suitable geometry and topography of microchannels, by the use of hydrogels or by spheroids formation. Three-dimensional cell culture in microfluidic systems are much better experimental in vitro models than cell culture in traditional culture vessels. It is the main reason why microsystems should be still improved, as to become widely used research tools in cellular engineering.
Wydawca
Czasopismo
Rocznik
Tom
Strony
909--929
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
autor
- Wydział Chemiczny Politechniki Warszawskiej, Instytut Biotechnologii, Zakład Mikrobioanalityki, ul. Noakowskiego 3, 00-664 Warszawa
autor
- Wydział Chemiczny Politechniki Warszawskiej, Instytut Biotechnologii, Zakład Mikrobioanalityki, ul. Noakowskiego 3, 00-664 Warszawa
autor
- Wydział Chemiczny Politechniki Warszawskiej, Instytut Biotechnologii, Zakład Mikrobioanalityki, ul. Noakowskiego 3, 00-664 Warszawa
autor
- Wydział Chemiczny Politechniki Warszawskiej, Instytut Biotechnologii, Zakład Mikrobioanalityki, ul. Noakowskiego 3, 00-664 Warszawa
autor
- Wydział Chemiczny Politechniki Warszawskiej, Instytut Biotechnologii, Zakład Mikrobioanalityki, ul. Noakowskiego 3, 00-664 Warszawa
Bibliografia
- [1] D. Janasek, J. Franzke, A. Manz, Nature, 2006, 442, 374.
- [2] Q. Tu, L. Pang, Y. Zhang, M. Yuan, J. Wang, D. Wang, W. Liu , Chin. J. Chem., 2013, 31, 304.
- [3] K. Takahata, Micro Electronic and Mechanical Systems, InTech, Rijenka, Croatia 2009.
- [4] E.W.K. Young, D.J. Beebe, Chem. Soc. Rev., 2010, 39, 1036.
- [5] J.T. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad, J.P. Vacanti, Biomed. Microdevices, 2002, 4, 167.
- [6] X. Zhang, P. Jones, S.J. Haswell, Chem. Eng. J., 2008, 135, 82.
- [7] G.M. Walker, H.C. Zeringue, D.J. Beebe, Lab Chip, 2004, 4, 91.
- [8] K. Ziółkowska, E. Jędrych, R. Kwapiszewski, J. Łopacinska, M. Skolimowski, M. Chudy, Sens. Actuators, B: Chemical, 2010, 145, 533.
- [9] B. Altmann, T. Steinberg, S. Giselbrecht, E. Gottwald, P. Tomakidi, M. Bächle-Haas, R.J. Kohal, Biomaterials, 2011, 32, 8947.
- [10] J.L. Wang, K.F. Ren, H. Chang, F. Jia, B.C. Li, Y. Ji, J. Ji, Macromol. Biosci., 2013, 13, 483.
- [11] E. Sollier, C. Murray, P. Maoddi, D. Di Carlo, Lab Chip, 2011, 11, 3752.
- [12] H. Ota, R. Yamamoto, K. Deguchi, Y. Tanaka, Y. Kazoe, Y. Sato, N. Miki, Sens. Actuators, B: Che¬mical, 2010, 147, 359.
- [13] H. Andersson, A.B. Berg, Sens. Actuators, B: Chemical, 2003, 92, 315.
- [14] P. Neuzil, S. Giselbrecht, K. Lange, T. J. Huang, A. Manz, Nat. Rev. Drug Discov.,2012, 11, 620.
- [15] D. Wlodkowic, J.M. Cooper, Curr. Opin. Chem. Biol., 2010, 14, 556.
- [16] G.A. Cooksey, C.G. Sip, A. Folch, Lab Chip, 2009, 7, 417.
- [17] E. Jędrych, Z. Pawlicka, M. Chudy, A. Dybko, Z. Brzozka, Anal. Chim. Acta, 2011, 683, 149.
- [18] A.W. Tilles, H. Baskaran, P. Roy, M.L. Yarmush, M. Toner, Biotechnol. Bioeng., 2001, 73, 379.
- [19] A. Kamholz, B.H. Weigl, B.A. Finlayson, P. Yager, Anal. Chem., 1999, 71, 5340.
- [20] W. Siyan, Y. Feng, Z. Lichuan, W. Jiarui, W. Yingyan, J. Li, L. Bingcheng, W. Qi, J. Pharm. Biomed. Anal., 2009, 49, 806.
- [21] Z. Wang, H. Kim, M. Marquez, T. Thorsen, Lab Chip, 2007, 276, 1425.
- [22] E. Jastrzębska, S. Flis, A. Rakowska, M. Chudy, A. Dybko, Z. Brzozka, Mikrochim. Acta., 2013, 180, 895.
- [23] X. Lou, G. Kim, H.K. Yoon, Y. Koo Lee, R. Kopelman, E. Yoon, Lab Chip, 2014, 14, 892.
- [24] E. Jastrzębska (Jędrych), I. Grabowska-Jadach, M. Chudy, A. Dybko, Z. Brzózka, Biomicrofluidics, 2012, 6, 044116-1.
- [25] F. Nie, M. Yamada, J. Kobayashi, M. Yamato, A. Kikuchi, T. Okano, Biomaterials, 2007, 28, 4017.
- [26] L. Businaro, A. Ninno, G. Schiavoni, V. Lucarini, G. Ciasca, A. Gerardino, F. Belardelli, L. Gabriele, F. Mattei, Lab Chip, 2013, 13, 229.
- [27] G. Fuller, D. Shields, Podstawy molekularne biologii komórki, Wydawnictwo Lekarskie PZWL, Warszawa 2000.
- [28] N. Annabi, S. Selimowić, J. P. A. Cox, J. Ribas, M. A. Bakooshli, D. Heintze, A. S. Weiss, D. Cropek, A. Khademhosseini, Lab Chip, 2013, 13, 3569
- [29] M.S. Kim, H. Hwang , Y. Choi, J. Park, Open Biotechnol. J., 2008, 2, 224.
- [30] H. Sato, Y. Houshi, S. Shoji, Microsyst. Technol., 2004, 10, 440.
- [31] Y.C. Toh, C. Zhang, J. Zhang, Y.M. Khong, S. Chang, V.D. Samper, D. van Noort, D.W. Hutmacher, H. Yu, Lab Chip, 2007, 7, 302.
- [32] Y.C. Toh, T.C. Lim, D. Tai, G. Xiao, D. van Noort, H. Yu, Lab on Chip, 2009, 9, 2026.
- [33] C.G. Anene-Nzelu, K.Y. Peh, A. Fraiszudeen, Y.H. Kuan, S.H. Ng, Y.C. Toh, H.L. Leo, H. Yu, Lab Chip, 2013, 13, 4124.
- [34] J.L. Drury, D.J. Mooney, Biomaterials, 2003, 24, 4337.
- [35] Y. Qiu, K. Park, Adv. Drug Deliver. Rev., 2001, 53, 321.
- [36] B.P. Chan, K.W. Leong, Eur. Spine. J., 2008, 17, S467.
- [37] M.S. Kim, J.H. Yeon, J. Park, Biomed. Microdevices, 2007, 9, 25.
- [38] A.O. Abu-Yousif, I. Rizvi, C.L. Evans, J.P. Celli, T. Hasan, J. Vis. Exp., 2009, 34, e1692, 1.
- [39] S. Stokłosowa, Hodowla komórek i tkanek, Wydawnictwo naukowe PWN, Warszawa 2004.
- [40] R. Lin, H. Chang, Biotechnol. J, 2008, 3, 1172.
- [41] M. Mantur, J. Wojsztel, Pol. Merk. Lek., XXIV, 2008, 140, 177.
- [42] K. Urbańska, J. Sokołowska, Życie Wet., 2012, 88/10, 827.
- [43] Y. Torisawa, A. Takagi, Y. Nashimoto, T. Yasukawa, H. Shiku, T. Matsue, Biomaterials, 2007, 28, 559.
- [44] B. Patara, Y.H. Chen, C.C. Peng, S.C. Lin, C.H. Lee, Y.C. Tung, Biomicrofluidics, 2013, 7, 054114-1.
- [45] C-Y. Fu, S.Y. Tseng, S.M. Yang, L. Hsu, C.H. Liu, H.Y. Chang, Biofabrication, 2014, 6, 015009-1. 928
- [46] K. Ziółkowska, R. Kwapiszewski, A. Stelmachowska, M. Chudy, A. Dybko, Z. Brzózka, Sens. Actuators, B: Chemical, 2012, 173, 908.
- [47] K. Ziółkowska, A. Stelmachowska, R. Kwapiszewski, M. Chudy, A. Dybko, Z. Brzózka, Biosens. Bioelectron., 2013, 40, 68.
Uwagi
Praca została opublikowana w specjalnym numerze „Wiadomości Chemicznych”, poświęconym pamięci Profesora Stanisława Głąba, w 70-tą rocznicę Jego urodzin
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb25d517-a22e-49ce-a798-b6aee229d893