PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetron sputtered silicon thin films for solar cell applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the important directions of research in photovoltaics is the development of new thin-film technology, which can replace the currently used, more expensive bulk silicon technology. The article discusses the findings from research focused on optimizing the parameters for the deposition of silicon thin films with P-type electrical conductivity for applications in photovoltaics. The growth rate was determined depending on the change in substrate temperature using reflectometry and the influence of deposition time on optical properties was determined using UV/VIS spectroscopy. Photovoltaic structures were made on substrates with an ITO layer and their electrical parameters were measured. The authors applied the magnetron sputtering method to deposit the layers, selecting it over the commercially used the chemical vapor deposition (CVD) method. This replacement could alleviate the necessity for high temperatures and broaden the potential applications of thin-film solar cells.
Rocznik
Strony
art. no. e151992
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
  • Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Materials Research Laboratory, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Materials Research Laboratory, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] Wu, Y., Zhang, T., Gao, R. & W, Ch. Portfolio planning of renewable energy with energy storage technologies for different applications from electricity grid. Appl. Energy 287, 116562 (2021). https://doi.org/10.1016/j.apenergy.2021.116562
  • [2] Yin, S., Wang, J., Li, Z. & Fang, X. State-of-the-art short-term electricity market operation with solar generation: A review. Renew. Sustain. Energy Rev. 138, 110647 (2021). https://doi.org/10.1016/j.rser.2020.110647
  • [3] Drygala, A. et al. Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon. Int. J. Hydrog. Energy 41, 7563-7567 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.180
  • [4] Drabczyk, K., Kulesza-Matlak, G., Drygala A., Szindler, M. & Lipiński, M. Electroluminescence imaging for determining the influence of metallization parameters for solar cell metal contacts. Sol. Energy 126, 14-21 (2016). https://doi.org/10.1016/j.solener.2015.12.029
  • [5] Gall, S. et. al. Polycrystalline silicon thin-film solar cells on glass. Sol. Energy Mater. Sol. Cells 93, 1004-1008 (2009). https://doi.org/10.1016/j.solmat.2008.11.029
  • [6] Gall, S., Becker, C., Lee, K. Y., Sontheimer, T. & Rech, B. Growth of polycrystalline silicon on glass for thin-film solar cells. J. Cryst. Growth 312, 1277-1281 (2010). https://doi.org/10.1016/j.jcrysgro.2009.12.065
  • [7] Aberle, A. G. Thin-film solar cells. Thin Solid Films 517, 4706-4710 (2009). https://doi.org/10.1016/j.tsf.2009.03.056
  • [8] Bellini, E., All solar cell efficiencies at a glance - updated. pv magazine. https://www.pv-magazine.com/2024/07/03/all-solar-cell-efficiencies-at-a-glance-updated-3/, as of 03/07/2024
  • [9] Chowdhury, F. I., El-Atab, N., Alnuaimi, A. & Nayfeh, A. ∼12% Efficiency Improvement in a-Si Thin-Film Solar Cells Using ALD Grown 2-nm-Thick ZnO Nanoislands. in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) 0318-0322 (IEEE, 2006). https://doi.org/10.1109/PVSC.2016.7749602
  • [10] Adeyinka, A. M., Mbelu, O. V., Adediji, Y. B. & Yahya, D. I. A review of current trends in thin film solar cell technologies. Int. J. Energy Power Eng. 17, 1-10 (2023). https://publications.waset.org/10012880.pdf
  • [11] ElKhamisy, K., Abdelhamid, H., El‑Rabaie, E. M. & Abdel-Salam, N. A comprehensive survey of silicon thin‑film solar cell. Plasmonics 19, 1-20 (2024). https://doi.org/10.1007/s11468-023-01905-x
  • [12] Haug, F.-J. & Ballif, C. Light management in thin film silicon solar cells. Energy Environ. Sci. 8, 824-837 (2015). https://doi.org/10.1039/C4EE03346A
  • [13] Sadan, M. B., Hatanaka, Y., Hashimoto, H., Shikoh, M. & Tomiyasu, T. Thin film deposition by chemical vapor deposition techniques for microelectronic and optoelectronic applications. J. Cryst. Growth 303, 220-224 (2007). https://doi.org/10.1016/j.jcrysgro.2006.12.027
  • [14] Gordon, R. G. Criteria for choosing transparent conductors. MRS Bull. 25, 52-57 (2000). https://doi.org/10.1557/mrs2000.151
  • [15] Gibson, D. et. al. Durable infrared optical coatings based on pulsed DC-sputtering of hydrogenated amorphous carbon (a-C:H). Appl. Opt. 59, 2731-2738 (2020). https://doi.org/10.1364/AO.378266
  • [16] Szindler, M., Szindler, M. M., Lukaszkowicz, K. & Matus, K. Silicon thin films with N-type electrical conductivity for solar cell applications. in 26th International Scientific Conference on Achievements in Mechanical and Materials Engineering AMME & bio 2024 (AMME&bio, 2024). https://www.amme.pl/wp-content/uploads/2024/04/szindler.pdf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb192e7e-edba-490a-8129-06dc4d1b1a54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.