PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modern magnetic field sensors – a review

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Czujniki pola magnetycznego
Języki publikacji
EN
Abstrakty
EN
The paper presents a review on modern magnetic field sensors. After general remarks describing performances of magnetic field sensors the most important sensors are presented. In all cases the principle of operation, advantages and drawbacks and properties are discussed. Following sensors are presented – induction sensors, fluxgate sensors, magnetoresistive sensors (AMR sensors, spin valve sensors, magnetic tunnel junction sensors), Hall effect sensors, SQUID sensors, resonance sensors (NMR resonance, ESR resonance, Overhauser resonance). Other sensors as giant magnetoimpedance sensors, extraordinary MR sensors, magnetooptical sensors, MEMS sensor are also briefly described.
PL
Artykuł przedstawia przegląd najczęściej używanych czujników pola magnetycznego. W każdym przypadku przedstawiona zasadę działania, wady i zalety oraz właściwości. Następujące czujniki są analizowane: czujniki indukcyjne, czujniki transduktorowe, czujniki magnetorezystancyjne (AMR, GMR i tunelowe), hallotrony, SQUID, czujniki rezonansowe (NMR, ESR i Overhauser). Dodatkowo krótko opisano czujniki magnetoimpedancyjne, czujniki EMR (extraordinary magnetoresistance, czujniki magnetooptyczne i czujniki MEMS.
Rocznik
Strony
1--12
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
  • Warsaw University of Technology
Bibliografia
  • 1 S. Tumanski – Handbook of magnetic field measurements, Ch.4 – Magnetic sensors, CRC Press 2011
  • 2 S. Tumanski – A review of magnetic sensors, Przegl. Elektr., 80 (2004), 74-80
  • 3 Lenz J., Edelstein A.S. – Magnetic sensors and their applications, IEEE Sensors J., 6 (2006), 631-649
  • 4 Ripka P. (Ed) – Magnetic sensors and magnetometers, Artech House, 2001
  • 5 Ripka P. - Noise and stability of magnetic sensors, J. Magn. Magn. Mat, 157-158 (1996), 424-427
  • 6 Tumanski S. – Induction coil sensors – a review, Meas.Sc.Technol., 18 (2007), R31-R47
  • 7 Prance R.J., Clark T.D., Prance H., Room temperature induction magnetometers, in Encyclopedia of Sensors, American Scientific Publishers, 2006
  • 8 Prance R.J., Clark T.D., Prance H. – Ultra low noise induction magnetometer for variable temperature operation, Sens. Act., 85 (2000), 361-364
  • 9 Ripka P. – Advances in fluxgate sensors, Sens. Act., A106 (2003), 8-14
  • 10 Husmann G., Afanassiev Y. – Fluxgate magnetometers for space research, Books on Demand GmbH, 2010
  • 11 Saito T., Fluxgate magnetometer with a 0.5 m length two core sensor, Sci.Rep. Tohoku Univ., 27 (1980), 85-93
  • 12 Chiesi L., Keijk P., Janossy B., Popovic R.S. –CMOS planar 2D microfluxgate sensor, Sens. Act., 82 (2000), 174-180
  • 13 Drljaca P.M., Keijk P., Vincent F., Piquet D., Gueissaz F., Popovic R.,S., - Single core fully integrated CMOS microfluxgate magnetometer, Sens. Act., A110 (2004), 236-241
  • 14 Tumanski S. – Thin fim magnetoresistive sensors, IOP Publ., 2001
  • 15 Kuijk K.E., van Gestel W.J., Gorter F.W. – The Barber pole, a linear magnetoresistive heads, IEEE Trans. Magn., 11 (1975), 1215-1217
  • 16 Tumanski S., Stabrowski M. – The optimization and design of magnetoresistive Barber-pole sensors, Sens.Act., 7 (1985), 285-295
  • 17 Baibich M.N., Broto J.M., Fert A., van Dau F.N., Petroff F. – Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett., 61 (1988), 2472-2475
  • 18 Parkin S.S.P., Bhadra R., Roche K.P. – Oscillatory magnetic exchange coupling through thin copper layer, Phys. Rev. Lett., 66 (1991), 2152-2155
  • 19 Dieny B., Speriosu V.S., Gurney B.A., Parkin S.S.P, Wilhoit D.R., Roche K.P., Metin S., Peterson D.T., Nadimi S. – Spinvalve effect in soft ferromagnetic sandwiches, J. Magn. Magn. Mat., 93 (1991), 1201-104
  • 20 Dieny B, Speriosau V.S, Metin S., Parkin S.S.P., Gurney B.A., Baumgart P., Wilhoit D.R. – Magnetotransport properties of magnetically spin valve structures, J. Appl. Phys., 69 (1991), 4774-4779
  • 21 Zhu Jiang-Gang, Park Ch. – Magnetic tunnel junctions Materials Today, 9 (2006), 36-45
  • 22 Parkin S.S.P., Kaiser C., Panchula A., Rice P.M., Hughes B.,Sumant M., Yang S.H. – Giant tunneling magnetoresistance at room temperature with MgO (100) tunnel barriers, Nat. Mater. 3 (2004), 862-867
  • 23 Yuasa S., Nagahama T., Fukushima A., Suzuki Y., Ando K. – Giant room temperature magnetoresistance in magnetic tunnel junctions with a crystalline Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater., 3 (2004), 868-871
  • 24 Lee Y.M., Hayakawa J., Ikeda S., Matsukura F., Ohno H. – Effect of electrode composition on the tunnel magnetoresistance of pseudo spin valve magnetic tunnel junction with MgO tunnel barrier, Appl. Phys. Lett., 90 (2007), 212507
  • 25 Popovic R.S. – Hall effect devices, IOP publ., 2004
  • 26 Boero G., de Mierre M., Besse P.A., Popovic R.S. – Micro Hall devices: performance, technologies and applications. Sens. Act. A106 (2003), 314-320
  • 27 Sandhu A., Masuda H., Oral A., Bending S.J.. – Room temperature magnetic imaging of magnetic storage media and garnet epilayers in the presence of external magnetic field using a submicron GaAs SHPM, J. Cryst. Growth., 227-228 (2001), 899-905
  • 28 Schott C., Waser J.M/., Popovic R.S. – Single chip 3D silicon Hall sensor, Sens. Act. 82 (2000), 167-173
  • 29 Krause H.J., Kreutzenbruck M. – Recent development in SQUID NDE, Phys. C. 368 (2002), 70-79
  • 30 Clarke J., Braginski A.I. (Ed) – The SQUID handbook, Wiley- VCH, 2004
  • 31 Kirtley J.R., Wikswo J.P. – Scanning SQUIDS microscopy, Ann. Rev. Mat., 29 (1999), 117-148
  • 32 Boero G., ,Frounchi J., Furrer B., Besse P.A., Popovic R.S. – Fully integrated probe for proton nuclear magnetic resonance magnetometry, Rev. Sc. Instr., 72 (2001), 2764-2768
  • 33 Uchiyama T., Mohri K., Panina L.V., Furuno K. – Magnetoimpedance in sputtered amorphous films for micromagnetic sensor, IEEE Trans. Magn., 31 (1995), 3182-3184
  • 34 Honkura Y. – Development of amorphous wire MI sensor for automotive use, J. Magn. Magn. Mat., 249 (2002), 375-381
  • 35 Solin S.A., Thio T., Hines D.R, Heremans J.J. – Enhanced room temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductor, Science 289 (2000), 1530-1532
  • 36 Sun J., Kosel J. – Extraordinary magnetoresistance in semiconductor/metal hybrids: a review, Materials, 6 (2013), 500-516
  • 37 Bucholtz F at al. – Demonstration of a fiber optic array tro three axis magnetometers for undersea applications, IEEE Trans. Magn., 31 (1995), 3194-3196
  • 38 Sedlar M., Matejec V., Paulicka I. – Optical fibre magnetic field sensor wwith ceramic magnetostrictive jacket, Sens. Act., 84 (2000), 297-302
  • 39 Yang H.H., Myung N.V., Yee J., Park D.Y., Yoo B.Y., Schwartz M., Nobe K., Judy J.W. – Ferromagnetic micromechanical magnetometer, Sens. Act. A 97-98 (2002), 88-97
  • 40 Givens R.B., Murphy J.C., Osiander R., Kistenmacher T.J., Wickenden D.K. – A high sensitivity, wide dynamic range magnetometer designed on a xylophone resonator, Appl. Phys. Lett., 69 m(1996), 2755-2757
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb149a5d-770e-4a30-b5fc-082adaa49a0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.