PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of Curing Agents for Linear Difunctional Glycidyl Azide Polymer (GAP), with and without Isocyanate, for Binder Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glycidyl Azide Polymer (GAP) is one of the most potential energetic binders for rocket propellants and gas generator compositions. In the present paper GAP of molecular weight (Mn) ~2000 was cured with a mixture of di- and tri-isocyanates without a cross linker. The curing profile and time of curing was recorded using a rheometer. The minimum curing time was observed for samples cured with Desmodour N-100 alone, whereas the maximum curing time was observed for samples cured with a mixture of Desmodour N-100 and Isophorone Diisocyanate (IPDI) (1:1 w/w). It was observed that all of the samples cured well and were void or bubble free. The mechanical properties data showed that the tensile strength (TS) of GAP cured with Desmodour N-100 alone was 1.19 kgf/cm2, which is a minimum, while the maximum TS (3.66 kgf/cm2) was achieved with a mixture of N-100 and 4,4’methylenebis(phenylisocynate) (MDI). The percent elongation for a sample cured with Desmodour N-100 was 160, and was reduced to 64.27 when a mixture of MDI and N-100 was used. In order to study the curing of GAP without an isocyanate, GAP diol was cured with hexanediol di-acrylate. GAP was also cured with an alkyne-based curing agent i.e. bis-propargyl succinate (BPS), which showed improved curing. Comparative thermal studies of GAP cured with isocyanate and acrylate was carried out. Differential Scanning Calorimetry (DSC) and Simultaneous Thermal Analysis (STA) curves for all of the cured samples were recorded in order to study and compare the thermal decomposition behaviour of the cured GAP. Isocyanate cured GAP exhibited a single stage decomposition, with larger heat output. Acrylate cured GAP exhibited a two stage decomposition. Finally, a mixture of IPDI and Desmodour N-100 was selected for curing of GAP. Accordingly, curing was carried out and was tested in a small ballistic evaluation motor (BEM) to observe the combustion behaviour and burn rate. From the pressure-time profile it was found that this composition gave smooth burning with a pressure of ~3 kg/sec2 for 7 seconds of burn.
Rocznik
Strony
206--222
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • High Energy Material Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Material Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Material Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Material Research Laboratory, Sutarwadi, Pune-411021, India
autor
  • High Energy Material Research Laboratory, Sutarwadi, Pune-411021, India
Bibliografia
  • [1] Provatas, A. Characterization and Polymerisation Studies of Energetic Binders. Defence Science and Technology Organisation (DSTO), DSTO-TR-1171, AR-011- 921, 2001.
  • [2] Frankel, M. B.; Grant, L. R.; Flanagan, J. E. Historical Development of Glycidyl Azide Polymer. J. Propul. Power 1992, 8(3): 560-563.
  • [3] Agarwal, J. P.; Hodsun, R. D. Organic Chemistry of Explosive. Wiley-VCH: 1st ed., 2007; ISBN 9780470029671.
  • [4] Earl, R. A. Use of Polymeric Ethylene Oxide in the Preparation of Glycidyl Azide Polymer. Patent US 4,486,351, Dec. 1984.
  • [5] Agrawal, J. P. High Energy Materials: Propellant, Explosive, Pyrotechnics. Wiley-VCH: 1st ed., 2010; ISBN 9780470059364.
  • [6] Johannessen, B. Low Polydispersity Glycidyl Azide Polymer. Patent US 5741997, 1998.
  • [7] Nazare, A. N.; Asthana, S. N.; Singh, H. Glycidyl Azide Polymer (GAP) − An Energetic Component of Advanced Solid Rocket Propellants − A Review. J. Energ. Mater. 1992, 10: 43-63.
  • [8] Manzara, A. P.; Johannessen, B. Primary Hydroxyl Terminated Polyglycidyl Azide. Patent US 5,164, 521, 1992.
  • [9] Sema, K.; Saira, O. Kinetics of Polyurethane Formation between GAP and Triisocyanate. J. Appl. Polym. Sci. 2001, 81: 918-23.
  • [10] Ryder, D. GAP Cured with Acrylate. Patent US 6143103, 2000.
  • [11] Manu, S. K.; Sekhar, V.; Seariah, K. J.; Verghese, T. L. Mathew, S. Kinetics of Glycidyl Azide Polymer Based Urethane Network Formation. J. Appl. Polym. Sci. 2008, 110: 908-914.
  • [12] Verma, I.K.; Choudhary,V.; Gaur, B.; Lochap, B.; Oberoi, S. R. Curing and Thermal Behavior of Poly(allyl azide) and Bismaleimides. J. Appl. Polym. Sci. 2006, 101(1): 779-786.
  • [13] Thomus, K.; Kunglstatter, W.; Eisele, S.; Wetzel, T.; Krause, H. Isocyanate Free Curing GAP with Bis Propargyl Succinate via 3,3 Dipolar Cycloaddition. Propellants Explos. Pyrotech. 2009, 34(3): 210-17.
  • [14] Mukundan, T.; Soman, R. R.; Agawane, N. T.; Sawmya, G. Technical Report on Synthesis and Characterization of Glycidyl Azide −Polymer (GAP) for Binder Application. Tech. Report No. HEMRL/EMR/2000-2, 2000.
  • [15] Katrizky, A. R.; Singh, S. K. J. Org.Chem. 2002, 67(25): 9077-9079.
  • [16] Hori, K.; Kimura, M. Combustion Mechanism of GAP. Propellants Explos. Pyrotech. 1996, 21(3): 160-65.
  • [17] Oyumi, Y.; Brill, T. B. Thermal Decomposition of Energetic Materials, IR and Rapid Thermoanalysis Studies of Azide Containing Monomers and Polymers. Combust. Flame 1986, 65: 127-135.
  • [18] Eroglu, M. S.; Guven, O. Thermal Decomposition of Poly (Glicidyl Azide) as Study by High Temperature FTIR and Thermogravimetry. J. Appl. Polym. Sci. 1996, 61: 201-206.
  • [19] Verma, I. K. High Energy Binders: Glycidyl Azide and Allyl Azide Polymers. Macromol. Symp. 2004, 210(1): 121-29.
  • [20] Gaur, B.; Lochap, B.; Choudhary, V.; Verma, I. K. Thermal Behaviour of Poly (Allyl Azide). J. Therm. Anal. 2003, 71(2): 467-479.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb10e66d-ece5-48ea-bb07-64ddb2785cd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.