PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Damage prediction hybrid procedure for FRP laminates subjected to random loads

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a hybrid procedure is formulated in order to predict the damage of a laminate composed of UD FRP laminae under random loading. This procedure is based on two pillars: a stiffness degradation model (SDM) combined with an energy approach taking into account the effect of load ratio in addition to a system of equations generated by SSDQM (space state differential quadrature method), which we solved with a novel technique. The outputs of SSDQM, previously used for free vibration behavior analysis of composite structures, are used with those of SDM to predict the damage failure of a composite laminate subjected to random loading. The obtained results correlate very well with the experimental ones and an extensive comparison with other models validate the accuracy and convergence characteristics of this hybrid procedure.
Rocznik
Strony
67--71
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • National School of Arts and Crafts (ENSAM), Meknès, Marjane II, Beni Mhamed, Morocco
  • National School of Arts and Crafts (M2I team), Meknès, Marjane II, Beni Mhamed, Morocco
autor
  • National School of Arts and Crafts (ModEC team), Meknès, Marjane II, Beni Mhamed, Morocco
Bibliografia
  • [1] Yao W.X., Himmel N., A new cumulative fatigue model for fiber-reinforced plastics, Compos. Sci. Technol. 2000, 60, 59-64.
  • [2] Aghazadeh Mohandesi J., Majidi B., Fatigue damage accumulation in carbon/epoxy laminated composites, Mater. Des. 2009, 30, 1950-1956.
  • [3] Wu F., Yao W., A fatigue damage model of composite materials, Int. J. Fatigue 2010, 32 (1), 134-138.
  • [4] Jen Y.-M., Yang Y.-H., A study of two-stage cumulative fatigue behavior for CNT/epoxy composites, Proced. Eng. 2010, 2(1), 2111-2120.
  • [5] Toumi R.B., Renard J., Monin M., Nimdum P., Fatigue damage modelling of continuous E-glass fibre/epoxy composite, Proced. Eng. 2013, 66, 723-736.
  • [6] Zhang W., Zhou Z., Zhang B., Zhao S., A phenomenological fatigue life prediction model of glass fiber reinforced polymer composites, Mater. Des. 2015, 66, 77-81.
  • [7] Shiri S., Yazdani M., Pourgol-Mohammad M., Fatigue lifeprediction of polymeric composites based on the simultaneous degradation of stiffness and strength under two-stage loading, Modares Mech. Eng. 2015, 14(14), 137-142 (In Persian).
  • [8] Mao H., Mahadevan S., Fatigue damage modelling of composite materials, Compos. Struct. 2002, 58(4), 405-410.
  • [9] Kang K.-W., Lim D.-M., Kim J.-K., Probabilistic analysis for the fatigue life of carbon/epoxy laminates, Compos. Struct. 2008, 85(3), 258-264.
  • [10] Shiri S., Pourgol-Mohammad M., Yazdani M., Prediction ofremaining fatigue cycles in composite materials under uncertainty, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B, Mechanical Engineering, 2015, http://dx.DOI.org/10.1115/1.4031037.
  • [11] Peng T., Liu Y., Saxena A., Goebel K., In-situ fatigue life prognosis for composite laminates based on stiffness degradation, Compos. Struct. 2015, 132, 155-165.
  • [12] Bellman R., Kashef BG., Casti J., Differential quadrature: a technique for the rapid solution of non-linear partial differential equations, J. Comput. Phys. 1972, 10, 40-52.
  • [13] Bert C.W., Jang S.K., Striz A.G., Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature, Comput. Mech. 1989, 5, 217-226.
  • [14] Bert C.W., Malik M., Transient analysis of gas-ubricated journal bearing systems by differential quadrature, ASME J. Tribol. 1997, 119, 91-99.
  • [15] Chen W.Q., Lv C.F., Bian Z.G., Elasticity solution for free vibration of laminated beams, Compos. Struct. 2003, 62, 75-82.
  • [16] Shu C., Richards B.E., Application of generalized differential quadrature to solve two-dimensional incompressible, Navier-Stokes equations, Int. J. Numer. Meth. Fluids 1992, 15, 791-798.
  • [17] Chen W.Q., Lue C.F., 3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported, Comp. Struct. 2005, 69, 77-87.
  • [18] Bahar L.Y., Transfer matrix approach to layered systems, J. Eng. Mech. 1972, 98, 1159-1172.
  • [19] Chen W.Q., Cai J.B., Ye G.R., Exact solutions of cross-ply laminates with bonding imperfections, AIAA J. 2003, 41, 2244-2250.
  • [20] Chen W.Q., Lee K.Y., Three-dimensional exact analysis of angle-ply laminates in cylindrical bending with interfacial damage via state space method, Compos. Struct. 2004, 64, 275-283.
  • [21] Chen W.Q., Lüe C.F., 3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported, Compos. Struct. 2005, 69, 77-87.
  • [22] Xu R., Ding H., Two-dimensional solutions for orthotropic materials by the state space method, Compos. Struct. 2007, 78, 325-336.
  • [23] Mohammed B., Mohamed A., Brahim O., Fatigue life prediction of composite laminate under random loading service: An energy approach, Materials Today: Proceedings, 2020, DOI: 10.1016/j.matpr.2020.05.091.
  • [24] Lee Y.-Li, Tjhung T., Chapter 3 - Rainflow Cycle Counting Techniques, Metal Fatigue Analysis Handbook 2012, 89-114.
  • [25] Bousfia M. et al., Fatigue life prediction for composite materials under Ergodic Gaussian and Stationary Random (EGSR) loads. Composites: Mechanics, Computations, Applications: An International Journal, 2017, DOI: 10.1615/CompMechComputApplIntJ.v8.i3.10.
  • [26] Shirazi A., Varvani-Farahani A., A stiffness degradation based fatigue damage model for FRP composites of (0/θ) laminate systems, Appl. Compos. Mater. 2010, 17(2), 137-150.
  • [27] Aboussaleh, M. Boukhili, R. Life prediction for composite laminates submitted to service loading spectra, Polym. Compos. 1998, 19, 241-245.
  • [28] Niesloney A., Böhom M., Mean stress effect correction using constant stress ratio S-N curves, Int. J. Fatigue 2013, DOI: 10.1016/j.ijfatigue.2013.02.019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb0d78b2-fd05-4dbc-b2b0-7a6d95724c9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.