PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verification of the functionality of device for monitoring human tremor

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tremor accompanying the Parkinson's disease is perceived as one of its most disturbing symptoms. Among available treatments there is a deep brain stimulation, which effectively reduces unwanted oscillations of patient's muscles. Nevertheless, setting parameters of the stimulation is a highly empirical process and the final outcome depends primarily on the experience of involved medical personnel. We present a device which is meant to provide a clinician with feedback based on the measurable parameters of tremor, monitored in many points of the body simultaneously. Functionality of the device was verified at a basic level. During the verification, the vibrations were recorded: (1) in a relaxed arm, (2) during voluntary contraction of muscles and (3) after being damped by tissues (in this case the vibrations were introduced from an external generator). Moreover, a method of selecting optimal place for mounting vibration probes is presented.
Twórcy
autor
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, ul. św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, ul. św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
  • Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, ul. św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
Bibliografia
  • [1] McAuley JH, Marsden CD. Physiological and pathological tremors and rhythmic central motor control. Brain 2000;123(8):1545–67.
  • [2] Mansur PHG, Cury LKP, Andrade AO, Pereira AA, Miotto GAA, Soares AB, et al. A review on techniques for tremor recording and quantification. Crit Rev Biomed Eng 2007;35(5):343–62. http://dx.doi.org/10.1615/CritRevBiomedEng.v35.i5.10.
  • [3] Buijink AWG, Contarino MF, Koelman JHTM, Speelman JD, van Rootselaar AF. How to tackle tremor – systematic review of the literature and diagnostic work-up. Front Neurol 2012;3:146. http://dx.doi.org/10.3389/fneur.2012.00146.
  • [4] Kern DS, Kumar R. Deep brain stimulation. Neurologist 2007;13(5):237–52. http://dx.doi.org/10.1097/NRL.0b013e3181492c48.
  • [5] Kuncel AM, Grill WM. Selection of stimulus parameters for deep brain stimulation. Clin Neurophysiol 2004;115:2431–41.
  • [6] Szumilas M, Ślubowska E, Lewenstein K. System for multipoint measurements of slowly varying magnetic fields. Mechatronics 2013: recent technological and scientific advances/Jabłoński Ryszard, Brezina Tomas. Springer; 2014. pp. 449–56.
  • [7] Beck TW, Housh TJ, Cramer JT, Weir JP, Johnson GO, Coburn JW, et al. Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review. Biomed Eng Online 2005;4(67.). http://dx.doi.org/10.1186/1475-925X-4-67.
  • [8] Beck TW, Housh TJ, Johnson GO, Cramer JT, Weir JP, Coburn JW, et al. Does the frequency content of the surface mechanomyographic signal reflect motor unit firing rates? A brief review. J Electromyogr Kinesiol 2007;17:1–13. http://dx.doi.org/10.1016/j.jelekin.2005.12.002.
  • [9] Ibitoye MO, Hamzaid NA, Zuniga JM, Wahab AKA. Mechanomyography and muscle function assessment: a review of current state and prospects. Clin Biomech 2014;29:691–704. http://dx.doi.org/10.1016/j.clinbiomech.2014.04.003.
  • [10] Islam MA, Sundaraj K, Ahmad RB, Ahamed NU. Mechanomyogram for muscle function assessment: a review. PLOS ONE 2013;8(3):e58902. http://dx.doi.org/10.1371/journal.pone.0058902.
  • [11] Gregori B, Galié E, Accornero N. Surface electromyography and mechanomyography recording: a new differential composite probe. Med Biol Eng Comput 2003;41:665–9.
  • [12] Silva J, Chau T. Coupled microphone–accelerometer sensor pair for dynamic noise reduction in MMG signal recording. Electron Lett 2003;39(21):1496–8. http://dx.doi.org/10.1049/el:20031003.
  • [13] Kaneko T, Nguyen Minh-Dung, Aoki R, Takahata T, Matsumoto K, Shimoyama I. Measurement of mechanomyogram. 2014 IEEE 27th International Conference on MEMS; 2014. pp. 845–8. http://dx.doi.org/10.1109/MEMSYS.2014.6765773.
  • [14] Alves N, Chau T. Uncovering patterns of forearm muscle activity using multi-channel mechanomyography. J Electromyogr Kines 2010;20(5):777–86. http://dx.doi.org/10.1016/j.jelekin.2009.09.003.
  • [15] Kawamoto T, Yamazaki N. Bulk movement included in multi-channel mechanomyography: similarity between mechanomyography of resting muscle and that of contracting muscle. J Electromyogr Kines 2012;22(6):923–9. http://dx.doi.org/10.1016/j.jelekin.2012.03.001.
  • [16] Farina D, Li X, Madeleine P. Motor unit acceleration maps and interference mechanomyographic distribution. J Biomech 2008;41(13):2843–9. http://dx.doi.org/10.1016/j.jbiomech.2008.07.007.
  • [17] Madeleine P, Hansen EA, Samani A. Linear and nonlinear analyses of multi-channel mechanomyographic recordings reveal heterogeneous activation of wrist extensors in presence of delayed onset muscle soreness. Med Eng Phys 2014;36(12):1656–64. http://dx.doi.org/10.1016/j.medengphy.2014.09.003.
  • [18] Madeleine P, Cescon C, Farina D. Spatial and force dependency of mechanomyographic signal features. J Neurosci Methods 2006;158:89–99. http://dx.doi.org/10.1016/j.jneumeth.2006.05.018.
  • [19] Cescon C, Madeleine P, Graven-Nielsen T, Merletti R, Farina D. Two-dimensional spatial distribution of surface mechanomyographical response to single motor unit activity. J Neurosci Methods 2007;159:19–25. http://dx.doi.org/10.1016/j.jneumeth.2006.06.011.
  • [20] Cescon C, Farina D, Gobbo M, Merletti R, Orizio C. Effect of accelerometer location on mechanomyogram variables during voluntary, constant-force contractions in three human muscles. Med Biol Eng Comput 2004;42 (1):121–7. http://dx.doi.org/10.1007/BF02351021.
  • [21] Archer AA, Atangcho P, Sabra KG, Shinohara M. Propagation direction of natural mechanical oscillations in the biceps brachii muscle during voluntary contraction. J Electromyogr Kinesiol 2012;22(1):51–9. http://dx.doi.org/10.1016/j.jelekin.2011.09.011.
  • [22] Jaskólska A, Brzenczek W, Kisiel-Sajewicz K, Kawczyński A, Marusiak J, Jaskólski A. The effect of skinfold on frequency of human muscle mechanomyogram. J Electromyogr Kinesiol 2004;14:217–25. http://dx.doi.org/10.1016/j.jelekin.2003.08.001.
  • [23] Zuniga JM, Housh TJ, Camic CL, Russell Hendrix C, Bergstrom HC, Schmidt RJ, et al. The effects of skinfold thicknesses and innervation zone on the mechanomyographic signal during cycle ergometry. J Electromyogr Kinesiol 2011;21(5):789–94. http://dx.doi.org/10.1016/j.jelekin.2011.05.009.
  • [24] Cooper MA, Herda TJ, Vardiman JP, Gallagher PM, Fry AC. Relationships between skinfold thickness and electromyographic and mechanomyographic amplitude recorded during voluntary and non-voluntary muscle actions. J Electromyogr Kinesiol 2014;24(2):207–13. http://dx.doi.org/10.1016/j.jelekin.2013.12.005.
  • [25] Posatskiy AO, Chau T. The effects of motion artifact on mechanomyography: a comparative study of microphones and accelerometers. J Electromyogr Kinesiol 2012;22(2):320–4. http://dx.doi.org/10.1016/j.jelekin.2011.09.004.
  • [26] Smith TG, Stokes MJ. Technical aspects of acoustic myography (AMG) of human skeletal muscle: contact pressure and force/AMG relationships. J Neurosci Methods 1993;47:85–92. http://dx.doi.org/10.1016/0165-0270(93)90024-L.
  • [27] Orizio C, Liberati D, Locatelli C, De Grandis D, Veicsteinas A. Surface mechanomyogram reflects muscle fibres twitches summation. J Biomech 1996;29(4):475–81. http://dx.doi.org/10.1016/0021-9290(95)00063-1.
  • [28] Islam MA, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA. Longitudinal, lateral and transverse axes of forearm muscles influence the crosstalk in the mechanomyographic signals during isometric wrist postures. PLOS ONE 2014;9(8): e104280. http://dx.doi.org/10.1371/journal.pone.0104280.
  • [29] Székely GJ, Rizzo ML, Bakirov NK. Measuring and testing independence by correlation of distances. Ann Stat 2007;35/ 6:2769–94. http://dx.doi.org/10.1214/009053607000000505.
  • [30] Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, et al. Detecting novel associations in large data sets. Science 2011;334(6062):1518–24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb0c9fd4-7fe0-4b97-83e2-fccc8d47e507
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.