PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper is a literature review indicating the importance of powder engineering in the modern stage of Industry 4.0 development. 47 technologies for the manufacturing and use the powders of metal and their alloys and ceramic in the manufacturing of products are indicated. All those technologies were compared in terms of their potential and attractiveness, pointing to their development trends. The focus was solely on powder production methods. Other technologies will be discussed in other papers in the powder engineering cycle. Design/methodology/approach: The authors' considerations are based on an extensive literature study and the results of the authors' previous studies and empirical work. In order to compare the analyzed technologies, the methodology of knowledge engineering are used, including the own method of contextual matrices for comparative analysis of a large set of technologies by presenting them on a dendrological matrix. Findings: The most interesting intellectual achievements contained in the paper include presentations of the authors' original concepts regarding the augmentation of the Industry 4.0 model. Material processing technologies occupy an important place in it, among them powder engineering technologies, both conventional and additive. The most attractive and promising development technologies in powder engineering are identified. Originality/value: The originality of the paper is associated with the novelty of the approach to analysing powder engineering, an indication of its importance for the development of the Industry 4.0 idea, where progress does not depend only on the development of IT technologies. It is also not true that from among technologies only additive technologies play a key role. Using avant-garde analyses in the field of knowledge engineering, the most avant-garde technologies of powder engineering are pointed out.
Rocznik
Strony
13--41
Opis fizyczny
Bibliogr. 237 poz.
Twórcy
  • Medical and Dental Engineering Center for Research, Design and Production ASKLEPIOS, ul. Królowej Bony 13D , 44-100 Gliwice, Poland
  • Medical and Dental Engineering Center for Research, Design and Production ASKLEPIOS, ul. Królowej Bony 13D , 44-100 Gliwice, Poland
  • Department of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
  • The WSB University of Poznań, Faculty in Chorzów, ul. Sportowa 29, 41-506 Chorzów, Poland
Bibliografia
  • 1] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Why are Carbon-Based Materials Important in Civilization Progress and Especially in the Industry 4.0. Stage of the Industrial Revolution?, Materials Performance and Characterization 8/3 (2019) 337-370. DOI: https://doi.org/ 910.1520/MPC20190145
  • [2] L.A. Dobrzański, L.B. Dobrzański, Approach to the design and manufacturing of prosthetic dental restorations according to the rules of the Industry 4.0 industrial revolution stage, MPC (2020) (in print).
  • [3] L.A. Dobrzański, L.B. Dobrzański, Dentistry 4.0 Concept in the Design and Manufacturing of Prosthetic Dental Restorations, Processes 8 (2020) 525. DOI: https://doi.org/10.3390/pr8050525
  • [4] L.A. Dobrzański, T. Tański, A.D. Dobrzańska- Danikiewicz, E. Jonda, M. Bonek, A. Drygała, Structures, properties and development trends of laser surface treated hot-work steels, light metal alloys and polycrystalline silicon, in: J. Lawrence, D. Waugh (Eds.), Laser Surface Engineering. Processes and Applications, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Ltd, Amsterdam, Boston, Cambridge, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2015, 3-32.
  • [5] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, M. Szindler, Structure and Properties of the Skeleton Microporous Materials with Coatings Inside the Pores for Medical and Dental Applications, in: M. Muruganant, A. Chirazi, B. Raj (Eds.), Frontiers in Materials Processing, Applications, Research and Technology, Springer, Singapore, 2018, 297-320. DOI: https://doi.org/10.1007/978-981-10- 4819-7 26
  • [6] L.A. Dobrzański, G. Matula, Powder Injection Molding of Tool Materials and Materials Containing One- Dimensional Nanostructural Elements, in: L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 223-243. DOI: https://doi.org/10.5772/67353
  • [7] L.A. Dobrzański, A. Kloc-Ptaszna, Fabrication, structure, properties and application of gradient sintered carbide-steels with HS6-5-2 matrix, in: L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 199-221. DOI: https://doi.org/10.5772/65379
  • [8] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, M. Szindler, T.G. Gaweł, Porous Selective Laser Melted Ti and Ti6Al4V Materials for Medical Applications, in: L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 161-181. DOI: https://doi.org/10.5772/65375
  • [9] L.A. Dobrzański, B. Tomiczek, M. Macek, Fabrication, Composition, Properties and Application of the AlMg1SiCu Aluminium Alloy Matrix Composite Materials Reinforced with Halloysite or Carbon Nanotubes, in: L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 139-160. DOI: https://doi.org/10.5772/65399
  • [10] L.A. Dobrzański, G. Matula, A.D. Dobrzańska- Danikiewicz, P. Malara, M. Kremzer, B. Tomiczek, M. Kujawa, E. Hajduczek, A. Achtelik-Franczak, L.B. Dobrzański, J. Krzysteczko, Composite Materials Infiltrated by Aluminium Alloys Based on Porous Skeletons from Alumina, Mullite and Titanium Produced by Powder Metallurgy Techniques, in: L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 95-137. DOI: https://doi.org/10.5772/65377
  • [11] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, E. Hajduczek, G. Matula, Fabrication Technologies of the Sintered Materials Including Materials for Medical and Dental Application, in: L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 17-52. DOI: https://doi.org/10.5772/65376
  • [12] L.A. Dobrzański, Goals and Contemporary Position of Powder Metallurgy in Products Manufacturing, in: L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 1-15. DOI: https://doi.org/10.5772/65378
  • [13] L.A. Dobrzański, G. Matula, Powder Injection Molding: Sinter-Hardening, in: R. Colas and G.E. Totten (Eds.), Encyclopedia of Iron, Steel, and Their Alloys, CRC Press, Boca Raton, 2016.
  • [14] T. Tański, E. Jonda, K. Labisz, L.A. Dobrzański, Toughness of Laser-Treated Surface Layers Obtained by Alloying and Feeding of Ceramic Powders, in: S. Zhang (Ed.), Thin Films and Coatings. Toughening and Toughness Characterization, CRC Press, Boca Raton, 2015, 225-314.
  • [15] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T. Tański, E. Jonda, A. Drygała, M. Bonek, Laser Surface Treatment in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2677-2717.
  • [16] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Foresight of the Surface Technology in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2587-2637.
  • [17] L.A. Dobrzański, The original concept for the development of implant scaffolds and biological engineering materials for applications in medicine and dentistry, in: L.A. Dobrzański, A.D. Dobrzańska- Danikiewicz (Eds.), Microporous and solid metallic materials for medical and dental application, International OCSCO World Press, Gliwice, Poland, 2017, 535-580 (in Polish).
  • [18] L.A. Dobrzański, A. Achtelik-Franczak, Structure and properties of composite materials for medical applications with a matrix of aluminum alloys reinforced with titanium skeletons produced by the method of selective laser sintering, in: L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Microporous and solid metallic materials for medical and dental application, International OCSCO World Press, Gliwice, Poland, 2017, 376-433 (in Polish).
  • [19] A.D. Dobrzańska-Danikiewicz, L.A. Dobrzański, M. Szindler, A. Achtelik-Franczak, L.B. Dobrzański, Surface treatment of microporous materials produced by selective laser sintering to improve the proliferation of live cells, in: L.A. Dobrzański, A.D. Dobrzańska- Danikiewicz (Eds.), Microporous and solid metallic materials for medical and dental application, International OCSCO World Press, Gliwice, Poland, 2017, 289-375 (in Polish).
  • [20] A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, L. Kroll, L.A. Dobrzański, New porous metal-polymer compo-site materials manufactured using selective laser melting, in: L.A. Dobrzański, A.D. Dobrzańska- Danikiewicz (Eds.), Microporous and solid metallic materials for medical and dental application, International OCSCO World Press, Gliwice, Poland, 2017, 245-288 (in Polish).
  • [21] L.A. Dobrzański (Ed.), Biomaterials for Regenerative Medicine, InTech, Rijeka, Croatia, 2018.
  • [22] L.A. Dobrzański, Metalls and alloys, International OCSCO World Press, Gliwice, Poland, 2017 (in Polish).
  • [23] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Microporous and solid metallic materials for medical and dental application, International OCSCO World Press, Gliwice, Poland, 2017 (in Polish).
  • [24] L.A. Dobrzański (Ed.), Powder Metallurgy - Funda- mentals and Case Studies, InTech, Rijeka, Croatia, 2017.
  • [25] L.A. Dobrzański, G. Matula, Powder metallurgy fundamentals and sintered materials, International OCSCO World Press, Gliwice, Poland, 2012 (in Polish).
  • [26] L.A. Dobrzański, Engineering materials and material design: Fundamentals of materials science and metal science, WNT, Warsaw, Poland, 2006 (in Polish).
  • [27] L.A. Dobrzański, Current development trends of sintered tool materials, Fachhochschule Wurzburg- Schweinfurt-Aschaffenburg, Schweinfurt, 1995, 1-40 (in German).
  • [28] L.A. Dobrzański, E. Hajduczek, J. Marciniak, R. Nowosielski, Metallurgy and heat treatment of tool materials, WNT, Warsaw, Poland, 1990 (in Polish).
  • [29] A.D. Dobrzanska-Danikiewicz, The Book of Critical Technologies of Surface and Properties Formation of Engineering Materials, International OCSCO World Press, Gliwice, Poland, 2013 (in Polish).
  • [30] M. Staszuk, L.A. Dobrzański, T. Tański, W. Kwaśny, M. Musztyfaga-Staszuk, The effect of PVD and CVD coating structures on the durability of sintered cutting edges, Archives of Metallurgy and Materials 59/1 (2014) 269-274. DOI: https://doi.org/10.2478/amm- 2014-0044
  • [31] L.A. Dobrzański, M. Staszuk, K. Gołombek, A. Śliwa, M. Pancielejko, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools, Archives of Metallurgy and Materials 55/1 (2010) 187-193.
  • [32] L.A. Dobrzański, J. Mikuła, The structure and functional properties of PVD and CVD coated Al2O3 + ZrO2 oxide tool ceramics, Journal of Materials Processing Technology 167/2-3 (2005) 438-446. DOI: https://dsi.org/10.1016jjmatprotec.2005.05.034
  • [33] M. Soković, J. Mikuła, L. A. Dobrzański, J. Kopać, L. Kosec, P. Panjan, J. Madejski, A. Piech, Cutting properties of the Al2O3 + SiCw) based tool ceramic reinforced with the PVD and CVD wear resistant coatings, Journal of Materials Processing Technology 164-165 (2005) 924-929. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.071
  • [34] L.A. Dobrzański, D. Pakuła, Comparison of the structure and properties of the PVD and CVD coatings deposited on nitride tool ceramics, Journal of Materials Processing Technology 164-165 (2005) 832-842. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.094
  • [35] L.A. Dobrzański, J. Mikuła, Structure and properties of PVD and CVD coated Al2O3 + TiC mixed oxide tool ceramics for dry on high speed cutting processes, Journal of Materials Processing Technology 164-165 (2005) 822-831. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.089
  • [36] L.A. Dobrzański, K. Gołombek, Structure and properties of the cutting tools made from cemented carbides and cermets with the TiN + mono-, gradient- or multi(Ti,Al,Si)N + TiN nanocrystalline coatings, Journal of Materials Processing Technology 164-165 (2005) 805-815. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.072
  • [37] L.A. Dobrzański, D. Pakuła, K. Gołombek, A.D. Dobrzańska-Danikiewicz, M. Staszuk, Structure and Properties of the Multicomponent and Nanostructural Coatings on the Sintered Tool Materials, L.A. Dobrzański (Ed.), Powder Metallurgy - Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 299-329. DOI: https://doi.org/10.5772/65400
  • [38] L.A. Dobrzański, D. Pakuła, M. Staszuk, A.D. Dobrzańska-Danikiewicz, Structure and properties of composite coatings on sintered carbide and nitride and sialon ceramics, International OCSCO World Press, Gliwice, Poland, 2015 (in Polish).
  • [39] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage, Journal of Achievements in Materials and Manufacturing Engineering 98/2 (2020) 56-85. DOI: https://doi.org/10.5604/01.3001.0014.1481
  • [40] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics, Archives of Materials Science and Engineering 102/2 (2020) (accepted for publication).
  • [41] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics, Journal of Achievements in Materials and Manufacturing Engineering 99/1 (2020) (in print).
  • [42] UNO General Assembly, 70/1. Transforming our world: the 2030 Agenda for Sustainable Development, Resolution adopted by the General Assembly on 25 September 2015. Available at: https://www.un.org/ga/search/view doc.asp?symbol= A/RES/70/1&Lang=E
  • [43] Japan Business Federation, Society 5.0: Co-Creating the Future (Excerpt), Keidanren, 2018. Available at: https://www.keidanren.or.jp/en/policy/2018/095 outli ne.pdf
  • [44] Japan Business Federation, Toward Realization of the New Economy and Society (Outline), Keidanren, 2016. Available at: https://www.keidanren.or.jp/en/policy/2016/029 outline.pdf
  • [45] Japan Business Federation, Japan’s Initiatives-Society 5.0, Keidanren.
  • [46] Y. Harayama, Society 5.0: Aiming for a New Human- Centered Society, Hitachi Review 66/6 (2017) 8-13.
  • [47] Government of Japan Cabinet Office, Society 5.0, Cabinet Office, 2019. Available at: http://web.archive.org/web/20190710182953/
  • [48] https://www8.cao.go.jp/cstp/society5_0/index.html
  • [49] M. Fukuyama, Society 5.0: Aiming for a New Human- Centered Society, Japan SPOTLIGHT July/August (2018) 47-50.
  • [50] H. Kagermann, W. Wahlster, J. Helbig, Recom- mendations for Implementing the Strategic Initiative Industrie 4.0: Final Report of the Industrie 4.0 Working Group, Federal Ministry of Education and Research, Bonn, Germany, 2013.
  • [51] H. Kagermann, Industry 4.0 benefits, in: Industry 4.0 in production, automation and logistics, Springer Fachmedien Wiesbaden, Wiesbaden, Germany, 2014, 603-614 (in German).
  • [52] M. Hermann, T. Pentek, B. Otto, Design Principles for Industrie 4.0 Scenarios: A Literature Review, Technische Universitat Dortmund, Dortmund, Germany, 2015.
  • [53] M. Ruhmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel, M. Harnisch, Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries Boston Consulting Group, Boston, MA, 2015. Available at: http://web.archive.org/web/20190711124617/https://w ww.zvw.de/media.media.72e472fb-1698-4a15-8858- 344351c8902f.original.pdf
  • [54] European Commision, Commission sets out path to digitise European industry, Press release on 19 April 2016, Brussels. Available at: https://ec.europa.eu/commission/presscorner/detail/en/ IP 16 1407
  • [55] Implementing the Digitising European Industry actions, Digital Innovation Hubs on Smart Factories in new EU Member States, the project managed by the EC to support the European Parliament, 2017. Available at: https://ec.europa.eu/futurium/en/implementing- digitising-european-industry-actions/digital- innovation-hubs-smart-factories-new-eu
  • [56] L.A. Dobrzański, Effect of Heat and Surface Treatment on the Structure and Properties of the Mg-Al-Zn-Mn Casting Alloys, in: L.A. Dobrzański, G.E. Totten, M. Bamberger (Eds.), Magnesium and Its Alloys: Technology and Applications, CRC Press, Boca Raton, FL, 2019, 91-202.
  • [57] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Applications of Laser Processing of Materials in Surface Engineering in the Industry 4.0 Stage of the Industrial Revolution, Materials Performance and Characterization 8/6 (2019) 1091-1129. DOI: https://doi.org/10.1520/MPC20190203
  • [58] D. Giusto, A. Iera, G. Morabito, L. Atzori (Eds.), The Internet of Things, Springer, New York, NY, 2010.
  • [59] J. Wan, H. Yan, Q. Liu, K. Zhou, R. Lu, D. Li, Enabling Cyber-Physical Systems with Machine-to-Machine Technologies, International Journal of Ad Hoc and Ubiquitous Computing 13/3-4 (2013) 187-196. DOI: https://doi.org/10.1504/IJAHUC.2013.055454
  • [60] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions, Future Generation Computer Systems 29/7 (2013) 1645-1660. DOI: https://doi.org/10.1016/tfuture.2013.01.010
  • [61] R. Moreno-Vozmediano, R.S. Montero, I.M. Llorente, Key Challenges in Cloud Computing: Enabling the Future Internet of Services, IEEE Internet Computing 17/4 (2013) 18-25. DOI: https://doi.org/10.1109/MIC.2012.69
  • [62] S.V. Buer, J.O. Strandhagen, T.S. Chan, The link between Industry 4.0 and lean manufacturing: mapping current research and establishing a research agenda, International Journal of Production Research 56/8 (2018) 2924-2940. DOI: https://doi.org/10.1080/00207543.2018.1442945
  • [63] Y. Zhang, G. Zhang, J. Wang, S. Sun, S. Si, T. Yang, Real-Time Information Capturing and Integration Framework of the Internet of Manufacturing Things, International Journal of Computer Integrated Manufacturing 28/8 (2015) 811-822. DOI: https://doi.org/10.1080/0951192X.2014.900874
  • [64] X. Qiu, H. Luo, G. Xu, R.Y. Zhong, G.Q. Huang, Physical Assets and Service Sharing for IoT-enabled Supply Hub in Industrial Park (SHIP), International Journal of Production Economics 159 (2015) 4-15. DOI: https://doi.org/10.1016jjjpe.2014.O9.001
  • [65] J. Posada, C. Toro, I. Barandiaran, D. Oyarzun, D. Stricker, R. de Amicis, E.B. Pinto, P. Eisert, J. Dollner, I. Vallarino, Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet, IEEE Computer Graphics and Applications 35/2 (2015) 26-40. DOI: https://doi.org/10.1109/MCG.2015.45
  • [66] M.U. Farooq, M. Waseem, S. Mazhar, A. Khairi, T. Kamal, A Review on Internet of Things (IoT), International Journal of Computer Applications 113/1 (2015) 1-7. DOI: https://doi.org/10.5120/19787-1571
  • [67] J. Lee, B. Bagheri, H.-A. Kao, A cyber-physical systems architecture for industry 4.0-based manufac¬turing systems, Manufacturing Letters 3 (2015) 18-23. DOI: https://doi.org/10.1016Zj.mfglet.2014.12.001
  • [68] F. Almada-Lobo, The Industry 4.0 Revolution and the Future of Manufacturing Execution Systems (MES), Journal of Innovation Management 3/4 (2015) 16-21. DOI: https://doi.org/10.24840/2183-0606 003.004 0003
  • [69] P. Gerbert, M. Lorenz, M. Ruhmann, M. Waldner, J. Justus, P. Engel, M. Harnisch, Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries, Boston Consulting Group, Boston, MA, 2015. Available at: http://web.archive.org/web/20190711125458/https://w ww.bcg.comZpublications/2015/engineered products project business industry 4 future productivity gro wth_manufacturing _industries.aspx
  • [70] D. Georgakopoulos, P.P. Jayaraman, M. Fazia, M. Villari, R. Ranjan, Internet of Things and Edge Cloud Computing Roadmap for Manufacturing, IEEE Cloud Computing 3/4 (2016) 66-73. DOI: https://doiJorgZ10L1109ZMCCJ2016.91
  • [71] R.Y. Zhong, S.T. Newman, G.Q. Huang, S. Lan, Big Data for Supply Chain Management in the Service and Manufacturing Sectors: Challenges, Opportunities, and Future Perspectives, Computers & Industrial Engineering 101 (2016) 572-591. DOI: https://doi.org/10.1016/j.cie.2016.07.013
  • [72] K. Sipsas, K. Alexopoulos, V. Xanthakis, G. Chryssolouris, Collaborative Maintenance in Flow- Line Manufacturing Environments: An Industry 4.0 Approach, Procedia CIRP 55 (2016) 236-241. DOI: https://doi.org/10.1016/j.procir.2016.09.013
  • [73] P.J. Mosterman, J. Zander, Industry 4.0 as a Cyber- Physical System Study, Software & Systems Modeling 15/1 (2016) 17-29. DOI: https://doi.orgZ10.1007/s10270- 015-0493-x
  • [74] R. Harrison, D. Vera, B. Ahmad, Engineering Methods and Tools for Cyber-Physical Automation Systems, Proceedings of the IEEE 104/5 (2016) 973-985. DOI: https://doi.org/10.1109/JPROC.2015.2510665
  • [75] X. Xu, Machine Tool 4.0 for the New Era of Manufacturing, International Journal of Advanced Manufacturing Technology 92/5-8 (2017) 1893-1900. DOI: https://doi.org/10.1007/s00170-017-0300-7
  • [76] L.A. Dobrzański, Role of materials design in maintenance engineering in the context of industry 4.0 idea, Journal of Achievements in Materials and Manufacturing Engineering 96/1 (2019) 12-49. DOI: https://doi.org/10.5604/01.3001.0013.7932
  • [77] L.A. Dobrzański, L.B. Dobrzański, Innovative Dental and Maxillo-Facial Implant-Scaffold Manufactured Using the Innovative Technology and Additive Computer-Aided Materials Design ADD-MAT, IMSKA-MAT project number POIR.01.01.00-0397/16- 00, Medical and Dental Engineering Centre for Research, ASKLEPIOS, Gliwice, Poland, 2017-2021.
  • [78] S.I. Tay, T.C. Lee, N.A.A. Hamid, A.N.A. Ahmad, An Overview of Industry 4.0: Definition, Components, and Government Initiatives, Journal of Advanced Research in Dynamical and Control Systems 10/14 (2018) 1379-1387.
  • [79] J.P. Kruth, P. Mercelis, J.V. Vaerenbergh, L. Froyen, M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal 11/1 (2005) 26-36. DOI: https://doi.org/10.1108/13552540510573365
  • [80] F. Xie, X. He, S. Cao, X. Qu, Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering, Journal of Materials Processing Technology 213/6 (2013) 838-843. DOI: https://doi.org/10.1016Zj.jmatprotec.2012.12.014
  • [81] T. Furumoto, A. Koizumi, M.R. Alkahari, R. Anayama, A. Hosokawa, R. Tanaka, T. Ueda, Permeability and strength of a porous metal structure fabricated by additive manufacturing, Journal of Materials Processing Technology 219 (2015) 10-16. DOI: https://doi.org/10.1016Zj.jmatprotec.2014.11.043
  • [82] A. Gasser, G. Backes, I. Kelbassa, A. Weisheit, K. Wissenbach, Laser additive manufacturing: laser metal deposition (LMD) and selective laser melting (SLM) in turbo-engine applications, Laser Technik Journal 7/2 (2010) 58-63. DOI: https://doi.org/10.1002/latj .201090029
  • [83] F. Abe, K. Osakada, M. Shiomi, K. Uematsu, M. Matsumoto, The manufacturing of hard tools from metallic powders by selective laser melting, Journal of Materials Processing Technology 111/1-3 (2001) 210-213. DOI: https://doi.org/10.1016/S0924-0136(01)00522-2
  • [84] W.H. Yu, S.L. Sing , C.K. Chua, C.N. Kuo, X.L. Tian, Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review, Progress in Materials Science 104 (2019) 330-379. DOI: https://doi.org/10.1016/tpmatsci.2019.04.006
  • [85] J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends, Journal of Materials Science and Technology 35 (2019) 270-284. DOI: https://doi.org/10.1016/j.jmst.2018.09.004
  • [86] K. Osakada, M. Shiomi, Flexible manufacturing of metallic products by selective laser melting of powder, International Journal of Machine Tools and Manufacture 46/11 (2006) 1188-1193. DOI: https://doi.org/10.1016/j.ijmachtools20060L024
  • [87] L.A. Dobrzański, A. Achtelik-Franczak, Structure and properties of titanium skeletal microporous materials produced by the method of selective laser sintering for applications in implantology and regenerative medicine, in: L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Microporous and solid metallic materials for medical and dental application, International OCSCO World Press, Gliwice, Poland, 2017, 186-244 (in Polish).
  • [88] C.L. Thomas, T.M. Gaffney, S. Kaza, C.H. Lee, Rapid prototyping of large scale aerospace structures, in: Proceedings of IEEE Aerospace Applications Conference, vol. 4, IEEE, Aspen, CO, USA, 1996, 219-230. DOI: https://doi.org/10.1109/AERO.1996.499663
  • [89] A. Mazzoli, Selective laser sintering in biomedical engineering, Medical and Biological Engineering and Computing 51 (2013) 245-256. DOI: https://doi.org/10.1007/s11517-012-1001-x
  • [90] S. Eshraghi, S. Das, Mechanical and microstructural properties of polycaprolactone scaffolds with one- dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering, Acta Biomaterialia 6/7 (2010) 2467-2476. DOI: https://doi.org/10.1016/j.ąctbio<2010L02.002
  • [91] A. Nouri, P.D. Hodgson, C. Wen, Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications, in: A. Mukherjee (Ed.), Biomimetics Learning from Nature, IntechOpen, London, UK, 2010, 415-450. DOI: https://doi.org/10.5772/8787
  • [92] S. Mellor, L. Hao, D. Zhang, Additive manufacturing: A framework for implementation, International Journal of Production Economics 149 (2014) 194-201. DOI: https://doi.org/10.1016/tijpe.2013.07.008
  • [93] N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs, Frontiers of Mechanical Engineering 8/3 (2013) 215-243. DOI: https://doi.org/10.1007/s11465-013-0248-8
  • [94] S. Hockfield, The Age of Living Machines: How Biology Will Build the Next Technology Revolution, W.W. Norton & Company, New York, NY, 2019.
  • [95] ASM Metals Handbook. Volume 7: Powder Metallurgy, ASM International, Metals Park, OH, 1984.
  • [96] W. Schatt, K.-P. Wieters, B. Kieback, Powder Metallurgy Processing and Materials, European Powder Metallurgy Association, Shrewsbury, U.K., 1997.
  • [97] H. Wahlster, H. Stephan, R. Ruthardt, Cost estimates and economic considerations in the production processing of high quality powders, Powder Metallurgy International 12 (1980) 173-178.
  • [98] H. Danninger, R. de Oro Calderon, C. Gierl-Mayer, Powder Metallurgy and Sintered Materials, in: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH 7 Co KGaA, Weinheim, 2017, 1-57. DOI: https://doi.org/10.1002/14356007.a22 105.pub2
  • [99] J.S. Hirschhorn, Introduction to Powder Metallurgy, American Powder Metallurgy Institute, Princeton, NJ, 1969.
  • [100] J.J. Gillvary, B.M. Borgstrom, Fracture and com- minution of brittle solids: further experimental results, Transactions of the American Institute of Mining and Metallurgical Engineers, Englewood, 1961.
  • [101] A. Lawley, An overview of powder atomization processes and fundamentals, International Journal of Powder Metallurgy (1977).
  • [102] A. Lawley, Preparation of metal powders, Annual Review of Materials Science, 1978.
  • [103] P.U. Gummeson, Modern atomizing techniques, Powder Metallurgy 15/29 (1972) 67-94. DOI: https://doi.org/10.1179/pom.1972.15.29.006
  • [104] R.J. Grandzol, J.A. Tallmadge, Water jet atomization of molten steel, AIChE Journal 19/6 (1973) 1149-1158. DOI: https://doi.org/10.1002/aic.690190611
  • [105] J.K. Beddow, Production of Metal powders by atomization, Heyden and Son Inc., Philadelphia, 1978.
  • [106] S. Small, T.J. Bruce, The comparison of charac- teristics of water and inert gas atomized powders, International Journal of Powder Metallurgy (1968).
  • [107] E.J. Lavernia, T.S. Srivatsan, R.H. Rangel, Atomization of Alloy Powders, Atomization and Sprays 2/3 (1992) 253-274. DOI: https://doi.org/10.1615/AtomizSpr.v2.i3.40
  • [108] A. Lawley, Atomization-The Production of Metal Powders, Metal Powder Industries Federation, Princeton, New Jersey, 1992.
  • [109] H. Lubanska, Correlation of spray ring data for gas atomization of liquid metals, Journal of Metallurgy 22 (1970) 45-49.
  • [110] A.J. Yule, J.J. Dunkley, Atomizing of Melts, Clarendon Press, Oxford, 1994.
  • [111] L. Gerking, Powder from metal and ceramic melts by laminar gas streams at supersonic speeds, Powder Metallurgy International 25/2 (1993) 59-65.
  • [112] Y. Xia, Z.Z. Fang, P. Sun, Y. Zhang, J. Zhu, Novel Method for Making Biomedical Segregation-Free Ti-30Ta Alloy Spherical Powder for Additive Manufacturing, JOM 70 (2018) 364-369. DOI: https://doi.org/10.1007/s11837-017-2713-z
  • [113] G.B. Schaffer, Powder metallurgy as a net shape processing technology, Materials Forum 20 (1996) 131-143.
  • [114] S.H. Huo, M. Qian, G.B. Schaffer, E. Crossin, Aluminium powder metallurgy, in: R. Lumley (Ed.), Fundamentals of Aluminium Metallurgy; Production, Processing and Applications, Woodhead Publishing Limited, Cambridge, UK, 2011, 655-701.
  • [115] M.A. Smirnov, M.A. Kaplan, M.A. Sevostyanov, Receiving finely divided metal powder by inert gas atomization, IOP Conference Series: Materials Science and Engineering 347 (2018) 012033. DOI: https7/doiorg/10J.1088/1757-899X/347/1/012033
  • [116] D. Dimitrov, K. Schreve, N. Beer, Advances in three dimensional printing - state of the art and future perspectives, Rapid Prototyping Journal 12/3 (2006) 136-147. DOI: https://doi.org/10.1108/13552540610670717
  • [117] F.P. W. Melchels, M.A.N. Domingos, T.J. Klein, J. Malda, P.J. Bartolo, D.W. Hutmacher, Additive manufacturing of tissues and organs, Progress in Polymer Science 37/8 (2012) 1079-1104. DOI: https://doi.org/10.1016/j.progpolymsci.2011.11.007
  • [118] S.J. Simske, R.A. Ayers, T.A. Bateman, Porous materials for bone engineering, Materials Science Forum 250 (1997) 151-182. DOI: https://doi.org/10.4028/www.scientific.net/MSF.250. 151
  • [119] D. Bak, Rapid prototyping or rapid production? 3D printing processes move industry towards the latter, Assembly Automation 23/4 (2003) 340-345. DOI: https://doi.org/10.1108/01445150310501190
  • [120] K. Chojnowska, Virtual model supported by 3D printout, Design News Polska, April (2008). Available at: http://www.designnews.pl/menu- gorne/artykul/article/model-wirtualny-wsparty- wydrukiem-3d/(inPolish).
  • [121] E. Sachs, M. Cima, J. Cornie, D. Brancazio, J. Bredt, A. Curodeau, T. Fan, S. Khanuja, A. Lauder, J. Lee, S. Michaels, Three-dimensional printing: the physics and implications of additive manufacturing, CIRP Annals 42/1 (1993) 257-260. DOI: https://doi.org/10.1016/S0007-8506(07)62438-X
  • [122] E. Sachs, M. Cima, J. Cornie, Three-dimensional printing: rapid tooling and prototypes directly from a CAD model, CIRP Annals 39/1 (1990) 201-204. DOI: https://doi.org/10.1016/S0007-8506(07)61035-X
  • [123] M. Lee, J.C.Y. Dunn, B.M. Wu, Scaffold fabrication by indirect three-dimensional printing, Biomaterials 26/20 (2005) 4281-4289. DOI: https://doi.org/10.1016/j.biomaterials.2004.10.040
  • [124] M. Maroulakos, G. Kamperos, L. Tayebi, D. Halazonetis, Y. Ren, Applications of 3D printing on craniofacial bone repair: A systematic review, Journal of Dentistry 80 (2019) 1-14. DOI: https://doi.org/10.1016/jjdent2018.11.004
  • [125] G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li, W. Shu, 3D bioactive composite scaffolds for bone tissue engineering, Bioactive Materials 3/3 (2018) 278-314. DOI: https://doi.org/10.1016/tbioactmat.2017.10.001
  • [126] J. An, J.E.M. Teoh, R. Suntornnond, C.K. Chua, Design and 3D Printing of Scaffolds and Tissues, Engineering 1/2 (2015) 261-268. DOI: https://doi.org/10.15302/J-ENG-2015061
  • [127] C.K. Chua, K. F. Leong and C. S. Lim, Rapid Prototyping: Principles and Applications, World Scientific Publishing Company, Singapore, 2010.
  • [128] N.E. Sanjana, S.B. Fuller, A fast flexible ink-jet printing method for patterning dissociated neurons in culture, Journal of Neuroscience Methods 136/2 (2004) 151-163. DOI: https://doi.org/10.1016/jjneumeth.2004.01.011
  • [129] P. Hue, Progress and Trends in Ink-jet Printing Technology, Journal of Imaging Science and Technology 42/1 (1998) 49-62.
  • [130] P. Liacouras, J. Garnes, N. Roman, A. Petrich, G.T. Grant, Designing and manufacturing an auricular prosthesis using computed tomography, 3- dimensional photographic imaging, and additive manufacturing: A clinical report, The Journal of Prosthetic Dentistry 105/2 (2011) 78-82. DOI: https://doi.org/10.1016/S0022-3913dD60002-4
  • [131] J. Park, M.J. Tari, H.T. Hahn, Characterization of the laminated object manufacturing (LOM) process, Rapid Prototyping Journal 6/1 (2000) 36-50. DOI: https://doi.org/10.1108/13552540010309868
  • [132] M. Prechtl, A. Otto, M. Geiger, Rapid tooling by laminated object manufacturing of metal foil, Advanced Materials Research 6/8 (2005) 303-312. DOI: https://doi.org/10.4028/www.scientific.net/AMR.6- 8.303
  • [133] L. Weisensel, N. Travitzky, H. Sieber, P. Greil, Laminated object manufacturing (LOM) of SiSiC composites, Advanced Engineering Materials 6/11 (2004) 899-903. DOI: https://doi.org/10.1002/adem.200400112
  • [134] Y.S. Liao, H.C. Li, Y.Y. Chiu, Study of laminated object manufacturing with separately applied heating and pressing, International Journal of Advanced Manufacturing Technology 27/7-8 (2006) 703-707. DOI: https://doi.org/10.1007/s00170-004-2201-9
  • [135] M.K. Agarwala, R. Weeren, A. Bandyopadhyay, P.J. Whalen, A. Safari, S.C. Danforth, Fused deposition of ceramics and metals: an overview, in: Proceedings of Solid Freeform Fabrication Symposium, The Univer- sity of Texas at Austin, Austin, TX, 1996, 385-392.
  • [136] M. Allahverdi, S.C. Danforth, M. Jafari, A. Safari, Processing of advanced electroceramic components by fused deposition technique, Journal of the European Ceramic Society 21/10-11 (2001) 1485-1490. DOI: https://doi.org/10.1016/S0955-2219(01)00047-4
  • [137] S.S. Crump, Fused deposition modeling (FDM): putting rapid back into prototyping, in: The Second International Conference on Rapid Prototyping, University of Dayton, Dayton, Ohio, 1991, 354-357.
  • [138] M. Nikzad, S.H. Masood, I. Sbarski, A. Groth, Rheological properties of a particulate-filled polymeric composite through fused deposition process, Materials Science Forum 654-656 (2010) 2471-2474. DOI: https://doi.org/10.4028/www.scientific.net/MSF.654- 656.2471
  • [139] S. Rangarajan, G. Qi, N. Venkataraman, A. Safari, S.C. Danforth, Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics, Journal of the American Ceramic Society 83/7 (2000) 1663-1669. DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01446.x
  • [140] W. Zhong, F. Li, Z. Zhang, L. Song, Z. Li, Short fiber reinforced composites for fused deposition modeling, Materials Science and Engineering: A 301/2 (2001) 125-130. DOI: https://doi.org/10.1016/S0921- 5093(00)01810-4
  • [141] R.C. Thomson, M.C. Wake, M.J. Yaszemski, A.G. Mikos, Biodegradable polymer scaffolds to regenerate organs, in: N.A. Peppas, R.S. Langer (Eds.), Biopolymers II. Advances in Polymer Science, vol. 122, Springer, Berlin, Heidelberg, 1995, 245-274. DOI: https://doi.org/10.1007/3540587888 18
  • [142] K. Zhang, W. Liu, X. Shang, Research on the processing experiments of laser metal deposition shaping, Optics & Laser Technology 39/3 (2007) 549-557. DOI: https://doi.org/10.1016/j.optlastec.2005.10.009
  • [143] W. Hofmeister, M. Griffith, M. Ensz, J. Smugeresky, Solidification in direct metal deposition by LENS processing, JOM 53/9 (2001) 30-34. DOI: https://doi.org/10.1007/s11837-001-0066-z
  • [144] V.K. Balla, P.D. De Vas Con Cellos, W. Xue, S. Bose, A. Bandyopadhyay, Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS), Acta Biomaterialia 5/5 (2009) 1831-1837. DOI: https://doi.org/10.1016Zi.actbio.2009.01.011
  • [145] G.N. Levy, R. Schindel, J.P. Kruth, Rapid manufac-turing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives, CIRP Annals 52/2 (2003) 589-609. DOI: https://doi.org/10.1016/S0007-8506(07)60206-6
  • [146] G.K. Lewis, E. Schlienger, Practical considerations and capabilities for laser assisted direct metal deposition, Materials & Design 21/4 (2000) 417-423. DOI: https://doi.org/10.1016/S0261-3069(99)00078-3
  • [147] D. Cormier, O. Harrysson, H. West, Characterization of H13 steel produced via electron beam melting, Rapid Prototyping Journal 10/1 (2004) 35-41. DOI: https://doi.org/10.1108/13552540410512516
  • [148] G.W. Han, D. Feng, M. Yin, W.J. Ye, Ceramic/aluminum co-continuous composite synthesized by reaction accelerated melt infiltration, Materials Science and Engineering: A 225/1-2 (1997) 204-207. DOI: https://doi.org/10.1016/S0921- 5093(96)10573-6
  • [149] L.E. Murr, S.M. Gaytan, A. Ceylan, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, R.B. Wicker, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Materialia 58/5 (2010) 1887-1894. DOI: https://doi.org/10.1016/j.actamat.2009.11.032
  • [150] L.E. Murr, S.M. Gaytan, F. Medina, E. Martinez, J.L. Martinez, D.H. Hernandez, B.I. Machado, D.A. Ramirez, R.B. Wicker, Characterization of Ti6Al4V open cellular foams fabricated by additive manufac-turing using electron beam melting, Materials Science and Engineering: A 527/7-8 (2010) 1861-1868. DOI: https://doi.org/10.1016/j.msea.2009.11.015
  • [151] L.E. Rannar, A. Glad, C.G. Gustafson, Efficient cooling with tool inserts manufactured by electron beam melting, Rapid Prototyping Journal 13/3 (2007) 128-135. DOI: https://doi.org/10.1108/13552540710750870
  • [152] P. Heinl, A. Rottmair, C. Korner, R.F. Singer, Cellular titanium by selective electron beam melting, Advanced Engineering Materials 9/5 (2007) 360-364. DOI: https://doi.org/10.1002/adem.200700025
  • [153] A.D. Dobrzańska-Danikiewicz, L.A. Dobrzański, A. Sękala, Results of Technology Foresight in the Surface Engineering Area, Applied Mechanics and Materials 657 (2014) 916-920. DOI: https://doi.org/10.4028/www.scientific.net/AMM.65 7.916
  • [154] S. Kumar, Selective Laser Sintering: A Qualitative and Objective Approach, JOM 55/10 (2003) 43-47. DOI: https://doi.org/10.1007/s11837-003-0175-y
  • [155] G. Wu, B. Zhou, Y. Bi, Y. Zhao, Selective laser sintering technology for customized fabrication of facial prostheses, The Journal of Prosthetic Dentistry 100/1 (2008) 56-60. DOI: https://doi.org/10.1016/S0022-3913(08)60138-9
  • [156] L.S. Bertol, W.K. Junior, F.P. da Silva, C.A. Kopp, Medical design: Direct metal laser sintering of Ti- 6Al-4V, Materials & Design 31/8 (2010) 3982-3988. DOI: https://doi.org/10.1016/j.matdes.2010.02.050
  • [157] F. Abe, K. Osakada, Y. Kitamura, M. Matsumoto, M. Shiomi, Manufacturing of titanium parts for medical purposes by selective laser melting, in: Proceedings of the Eighth International Conference on Rapid Prototyping, University of Dayton, Tokyo, Japan, 2000, 288-293.
  • [158] B. Lethaus, L. Poort, R. Bockmann, R. Smeets, R. Tolba, P. Kessler, Additive manufacturing for microvascular reconstruction of the mandible in 20 patients, Journal of Cranio-Maxillo-Facial Surgery 40/1 (2012) 43-46. DOI:4 https://doi.org/10.1016/ijcms.2011.01.007
  • [159] L.A. Dobrzański, A. Achtelik-Franczak, M. Król, Computer Aided Design in Selective Laser Sintering (SLS) - application in medicine, Journal of Achievements in Materials and Manufacturing Engineering 60/2 (2013) 66-75.
  • [160] A. Dobrzańska-Danikiewicz, L.A. Dobrzański, T.G. Gaweł, Scaffolds applicable as implants of a loss palate fragments, in: International Conference on Processing & Manufacturing of Advanced Materials. Processing, fabrication, properties, applications, THERMEC'2016, Graz, Austria, 2016, 193.
  • [161] D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, T. Kokubo, Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments, Acta Biomaterialia 7/3 (2011) 1398-1406. DOI: https://doi.org/10.1016/tactbio.2010.09.034
  • [162] M. Greulich, Rapid prototyping and fabrication of tools and metals parts by laser sintering of metal powders, Materials Technology 12/5-6 (1997) 155-157. DOI: https://doi.org/10.1080/10667857.1997.11752749
  • [163] A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, W. Wolany, Ti6Al4V titanium alloy used as a modern biomimetic material, Archives of Materials Science and Engineering 76/2 (2015) 150-156.
  • [164] B. Majkowska, M. Jażdżewska, E. Wołowiec, W. Piekoszewski, L. Klimek, A. Zieliński, The possibility of use of laser-modified Ti6Al4V alloy in friction pairs in endoprostheses, Archives of Metallurgy and Materials 60/2 (2015) 755-758. DOI: https://doi.org/10.1515/amm-2015-0202
  • [165] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, Ti6Al4V porous elements coated by polymeric surface layer for biomedical applications, Journal of Achievements in Materials and Manufac¬turing Engineering 71/2 (2015) 53-59.
  • [166] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, L.B. Dobrzański, A. Achtelik-Franczak, P. Malara, M. Szindler, L. Kroll, Metallic skeletons as reinforcement of new composite materials applied in orthopaedics and dentistry, Archives of Materials Science and Engineering 92/2 (2018) 53-85. DOI: https://doi.org/10.5604/01.3001.0012.6585
  • [167] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, L.B. Dobrzański, A. Achtelik-Franczak, P. Malara, M. Szindler, L. Kroll, The new generation of the biological-engineering materials for applications in medical and dental implant-scaffolds, Archives of Materials Science and Engineering 91/2 (2018) 56-85. DOI: https://doi.org/10.5604/01.3001.0012.5490
  • [168] S. Das, M. Wohlert, I.J. Beaman, D.L. Bourell, Producing metal parts with selective laser sintering/hot isostatic pressing, JOM 50/12 (1998) 17¬20. DOI: https://doi.org/10.1007/s11837-998-0299-1
  • [169] B. Duan, M. Wang, W.Y. Zhou, W.L. Cheung, Z.Y. Li, W.W. Lu, Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering, Acta Biomaterialia 6/12 (2010) 4495-4505. DOI: https://doi.org/10.1016/tactbio.2010.06.024
  • [170] R.M. German, Sintering theory and practice, John Wiley & Sons, New York, 1996.
  • [171] R.M. German, Powder metallurgy science, Metal Powder Industries Federation, Princeton, N. J., 1984.
  • [172] V. Subramanian, Metal and Ceramic Injection Molding, BCC Research Report Overview AVM049E (2018) 1-13.
  • [173] R.M. German, Injection molding of metals and ceramics, Metal Powder Industries Federation, Princeton, N. J., 1997.
  • [174] R.M. German, Powder injection molding, Metal Powder Industries Federation, Princeton, N. J., 1990.
  • [175] Raising the game in the demanding world of PM high speed steel, Metal Powder Report 61/1 (2006) 16-19. DOI: https://doi.org/10.1016/S0026-0657(06)70571-9
  • [176] T.P. Burnett, P.E. Danielle, E. Lower, Idaho Cleanup Project: Densfication and Shape Change of Calcined High Level Waste during Hot-Isostatic Pressing, Proceedings of the COMSOL Conference, Boston, 2011.
  • [177] Introduction to Hot Isostatic Pressing technology. A guide for Designers and Engineers, European Powder Metallurgy Association, 2019, 1-32.
  • [178] D. Singh, S.C. Koria, R.K. Dube, Study of free fall gas atomisation of liquid metals to produce powder, Powder Metallurgy 44/2 (2001) 177-184. DOI: https://doi.org/10.1179/003258901666239
  • [179] P. Sun, Z.Z. Fang, Y. Zhang, Y. Xia, Review of the Methods for Production of Spherical Ti and Ti Alloy Powder, JOM 69/10 (2017) 1853-1860. DOI: https://doi.org/10.1007/s11837-017-2513-5
  • [180] C.F. Yolton, Gas atomized titnaium and titanium aluminide alloys, Proceedings of the PM in Aerospace and Defense Technology Conference, Metal Powder Industries Federation, Seattle, Washington, 1989, 123-131.
  • [181] J.H. Moll, Utilization of gas-atomized titanium and titanium-aluminide powder, JOM 52 (2000) 32-34. DOI: https://doi.org/10.1007/s11837-000-0030-3
  • [182] C.F. Dixon, Atomizing molten metals — a review, Canadian Metallurgical Quarterly 12/3 (1973) 309-322. DOI: https://doi.org/10.1179/cmq.1973.12.3.309
  • [183] A.J. Heidloff, J.R. Rieken, I.E. Anderson, D. Byrd, Proceedings of 2011 International Conference on Powder Metallurgy And Particulate Materials, Metal Powder Industries Federation, San Francisco, 2011.
  • [184] A.J. Heidloff, J.R. Rieken, I.E. Anderson, D. Byrd, J. Sears, M. Glynn, R.M. Ward, Advanced gas atomization processing for Ti and Ti alloy powder manufacturing, JOM 62 (2010) 35-41. DOI: https://doi.org/10.1007/s11837-010-0075-x
  • [185] I.E. Anderson, A.J. Heidloff, J.R. Rieken, D.J. Byrd, PowderMet 2010: Advances in Powder Metallurgy & Particulate Processing, Metal Powder Industries Federation, Hollywood, 2010, 33-44.
  • [186] H. Franz, L. Plochl, F.P. Schimansky, Recent advances of titanium alloy powder production by ceramic-free inert gas atomization, Proceedings of 24th Annual ITA Conference Titanium 2008, International Titanium Association, Las Vegas, 2008.
  • [187] V. Bojarevics, A. Roy, K. Pericleous, Numerical model of electrode induction melting for gas atomization, COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 30/5 (2011) 1455-1466. DOI: https://doi.org/10.1108/03321641111152612
  • [188] S. Feng, M. Xia, C.-C. Ge, Consecutive induction melting of nickel-based superalloy in electrode induction gas atomization, Chinese Physics B 26/6 (2017) 060201. DOI: https://doi.org/10.1088/1674- 1056/26/6/060201
  • [189] M. Qian, F.H. Froes (Eds.), Titanium powder metal-lurgy; Science, technology and application, Butter- worth-Heinemann, Waltham, MA, USA - Oxford, UK, 2015. DOI: https://doi.org/10.1016/C2013-0- 13619-7
  • [190] R. Cunningham, A. Nicolas, J. Madsen, E. Fodran, E. Anagnostou, M.D. Sangid, A.D. Rollett, Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V, Materials Research Letters 5/7 (2017) 516-525. DOI: https://doi.org/10.1080/21663831.2017.1340911
  • [191] M.E. Smagorinski, G. Tsantrizos, Proceedings of the 2002 World Congress on Powder Metallurgy & Particulate Materials, Metal Powder Industries Federation, Orlando, 2002.
  • [192] M. Entezarian, F. Allaire, P. Tsantrizos, R.A.L. Drew, Plasma atomization: A new process for the production of fine, spherical powders, JOM 48 (1996) 53-55. DOI: https://doi.org/10.1007/BF03222969
  • [193] A. Fujita, S. Koiwai, S. Fujieda, K. Fukamichi, T. Kobayashi, H. Tsuji, S. Kaji, A.T. Saito, Active Magnetic Regeneration Behavior of Spherical Hydrogenated La(Fe0.86Si0.14)13 Fabricated by Rotating Electrode Process, Japanese Journal of Applied Physics 46P.2/8-11 (2007) L154. DOI: https://doi.org/10.1143/JJAP.46.L154
  • [194] G. Chen, S.Y. Zhao, P. Tan, J. Wang, C.S. Xiang, H.P. Tanga, A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization, Powder Technology 333 (2018) 38-46. DOI: https://doi.Org/10.1016/i.powtec.2018.04.013
  • [195] S.A. Miller, P.R. Roberts, ASM Handbook Volume 7, Powder Metal Technologies and Applications, ASM International, Materials Park, 1990, 97-101.
  • [196] P.R. Roberts, Proceedings 1989 PM Conference: Advances in Powder Metallurgy, Metal Powder Industries Federation, San Diego, 1989, 427-438.
  • [197] A. Ozols, H.R. Sirkin, E.E. Vicente, Segregation in Stellite powders produced by the plasma rotating electrode process, Materials Science and Engineering: A 262/1-2 (1999) 64-69. DOI: https://doi.org/10.1016/S0921-5093(98)01021-1
  • [198] W. He, Y. Liu, H. Tang, Y. Li, B. Liu, X. Liang, Z. Xi, Microstructural characteristics and densification behavior of high-Nb TiAl powder produced by plasma rotating electrode process, Materials & Design 132 (2017) 275-282. DOI: https://doi.Org/10.1016/i.matdes.2017.06.072
  • [199] P.W. Lee, Y. Trudel, R. Iacocca, R.M. German, B.L. Ferguson, W.B. Eisen, K. Moyer, D. Madan, H. Sanderow (Eds.), ASM Handbook, Volume 7: Powder Metal Technologies and Applications, ASM International, Materials Park, 1998, 287-301.
  • [200] A.B. Spierings, M. Voegtlin, T. Bauer, K. Wegener, Powder flowability characterisation methodology for powder-bedbased metal additive manufacturing, Progress in Additive Manufacturing 1 (2016) 9-20. DOI: https://doi.org/10.1007/s40964-015-0001-4
  • [201] L. Wang, Y. Liu, S. Chang, Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization, Metallurgical and Materials Transactions A 47 (2016) 2444-2453. DOI: https://doi.org/10.1007/s11661-016-3384-z
  • [202] D.P. Barbis, R.M. Gasior, G.P. Walker, J.A. Capone, T.S. Schaeffer, Titanium powders from the hydride- dehydride process, in: M. Qian, F.H. Froes (Eds.), Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth-Heinemann, Waltham, MA, USA - Oxford, UK, 2015, 101-105. DOI: https://doi.org/10.1016/B978-0-12-800054-0.00007-1
  • [203] K. Araci, D. Mangabhai, K. Akhtar, Production of titanium by the Armstrong Process®, in: M. Qian, F.H. Froes (Eds.), Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth-Heinemann, Waltham, MA, USA - Oxford, UK, 2015, 149-162. DOI: https://doi.org/10.1016/B978-0-12- 800054-0.00009-5
  • [204] I. Mellor, L. Grainger, K. Rao, J. Deane, M. Conti, G. Doughty, D. Vaughan, Titanium powder production via the Metalysis process, in: M. Qian, F.H. Froes (Eds.), Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth-Heinemann, Waltham, MA, USA - Oxford, UK, 2015, 51-67. DOI: https://doi.org/10.1016/B978-0-12- 800054-0.00004-6
  • [205] Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T. Zhang, P. Sun, M.L. Free, J. Guo, A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag, Chemical Engineering Journal 286 (2016) 517-527. DOI: https://doi.org/10.1016/j.cej.2015.10.090
  • [206] P. Sun, Z.Z. Fang, Y. Zhang, Y. Xia, Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method, JOM 69 (2017) 2731-2737. DOI: https://doi.org/10.1007/s11837-017-2584-3
  • [207] Y. Xia, J. Zhao, Z. Dong, X. Guo, Q. Tian, Y. Liu, A Novel Method for Making Co-Cr-Mo Alloy Spherical Powder by Granulation and Sintering, JOM 72 (2020) 1279-1285. DOI: https://doi.org/10.1007/s11837-020-04009-7
  • [208] P. Sun, Z.Z. Fang, Y. Xia, Y. Zhang, C. Zhou, A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing, Powder Technology 301 (2016) 331-335. DOI: https://doi.org/10.1016/j.powtec.2016.06.022
  • [209] Z.Z. Fang, J.D. Paramore, P. Sun, K.S. Ravi Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, M. Free, Powder metallurgy of titanium - past, present, and future, International Materials Reviews 63/7 (2018) 407-459. DOI: https://doi.org/10.1080/09506608.2017.1366003
  • [210] Y. Zhang, Z.Z. Fang, P. Sun, T. Zhang, Y. Xia, C. Zhou, Z. Huang, Thermodynamic Destabilization of Ti-O Solid Solution by H2 and Deoxygenation of Ti Using Mg, Journal of the American Chemical Society 138/22 (2016) 6916-6919. DOI: https://doi.org/10.1021/jacs.6b00845
  • [211] Y. Zhang, Z.Z. Fang, Y. Xia, P. Sun, B. van Devener, M. Free, H. Lefler, S. Zheng, Hydrogen assisted magnesiothermic reduction of TiO2, Chemical Engineering Journal 308 (2017) 299-310. DOI: https://doi.org/10.1016/j.cej.2016.09.066
  • [212] C.C. Liu, X. Lu, L. Zhang, W.L. Song, J.B. Tong, S.D. Yang, X.H. Qu, Fabrication of micro-fine spherical Ti-6Al-4V alloy powders based on hydrogen decrepitation and plasma spheroidisation, Powder Metallurgy 59/4 (2016) 229-235. DOI: https://doi.org/10.1080/00325899.2016.1147131
  • [213] R. Li, M. Qin, H. Huang, C. Liu, Z. Chen, M. Huang, L. Zhang, X. Qu, Fabrication of fine-grained spherical tungsten powder by radio frequency (RF) inductively coupled plasma spheroidization combined with jet milling, Advanced Powder Technology 28/12 (2017) 3158-3163. DOI: https://doi.org/10.1016/j.apt.2017.09.019
  • [214] China Government Report, The eleventh five-year- plan of magnesium industry in China, Newspapers of nonferrous metal of China, 2005.
  • [215] G. Li, C. Yuan, P. Zhang, B. Chen, Experiment-based fire and explosion risk analysis for powdered magnesium production methods, Journal of Loss Prevention in the Process Industries 21/4 (2008) 461-465. DOI: https://doi.org/10.1016/jjlp.2008.03.003
  • [216] D.C. Brown, Magnesium recycling plant has explosion, Monthly Review of Magnesium 31/6 (2002) 9-17.
  • [217] S.C. Chen, Magnesium powder explosion accidents, Chutian newspaper office, Wuchang, HuBei, 2005. DOI: http://www.cnhubei.com/200512/ca957521.htm
  • [218] B.L. Liu, The cause and protection of magnesium powder explosion, Light Metal 10 (2002) 53-56.
  • [219] P.K. Samal, J.W. Newkirk (Eds.), ASM Handbook: Volume 7: Powder Metallurgy, ASM International, Materials Park, OH, 2015.
  • [220] G.S. Upadhyaya (Ed.), Cemented tungsten carbides: Production, properties, and testing, Noyes Publications, Westwood. N.J., 1998.
  • [221] T.Y. Kosolapova, Carbides: Properties, production, and applications, Plenum Press, New York-London, 1971.
  • [222] L.A. Dobrzański, Descriptive metal science of iron alloys, Silesian University of Technology Publishing House, Gliwice, Poland, 2007 (in Polish).
  • [223] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Materials surface engineering - a compendium of knowledge and an academic handbook, International OCSCO World Press, Gliwice, Poland, 2018 (in Polish).
  • [224] J. Nowacki, Sintered metals and metal matrix composites, WNT, Warsaw, Poland, 2005 (in Polish).
  • [225] H.V. Atkinson, S. Davies, Fundamental aspects of hot isostatic pressing: an overview, Metallurgical and Materials Transactions A 31 (2000) 2981-3000. DOI: https://doi.org/10.1007/s11661-000-0078-2
  • [226] R. Pampuch, K. Haberko, M. Kordek, The science of ceramic processes, PWN, Warsaw, Poland, 1992 (in Polish).
  • [227] M. Wysiecki, Modern tool materials, WNT, Warsaw, Poland, 1997 (in Polish).
  • [228] K. Oczoś, Shaping ceramic technical materials, Rzeszów University of Technology Publishing House, Rzeszów, Poland, 1996 (in Polish).
  • [229] M.J. Kupczyk, Methods for producing metal powders, alloys and non-metals for the production of sintered tool materials, Archives of Machine Technology and Automation PAN 31/1 (2011) 17-26 (in Polish).
  • [230] A. Heim, M. Solecki, Kinetics of yeast cell disintegration in a pearl mill, Chemical Engineering and Equipment 50/1 (2011) 9-10 (in Polish).
  • [231] C.I. Pasher, Crushing and Grinding Process Handbook, Wiley, Chichester, 1987.
  • [232] K. Hoffl, Shredding and classifying machines, Deutscher Verlag fur Grundstoffindustrie, Leipzig, 1985 (in German).
  • [233] J. Sidor, Use of agitator mills in very fine grinding processes - Review, Ceramic Materials 65/2 (2013) 239-244 (in Polish).
  • [234] F.H. Froes, M.A. Qian, A perspective on the future of titanium powder metallurgy, in: M. Qian, F.H. Froes (Eds.), Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth-Heinemann, Waltham, MA, USA - Oxford, UK, 2015, 602-608. DOI: https://doi.org/10.1016/B978-0-12- 800054-0.00031-9
  • [235] A.D. Dobrzańska-Danikiewicz, Foresight of material surface engineering as a tool building a knowledge based economy, Materials Science Forum 706-709 (2012) 2511-2516. DOI: https://doi.org/10.4028/www.scientific.net/MSF.706- 709.2511
  • [236] J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloying, Metallurgical Transactions 1/10 (1970) 2943-2951. DOI: https://doi.org/10.1007/BF03037835
  • [237] J. Tengzelius, O. Grinder, Powder metallurgy in Denmark, Finland, and Sweden, International Journal of Powder Metallurgy 44/3 (2008) 41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bb06c6a8-40b8-415c-8333-31707d943306
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.