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1. INTRODUCTION

We consider the following boundary value problem with nonlinearity depending on
the derivative: {

−ẍ = f (t, x, ẋ) ,
x (0) = x (1) = 0,

(1.1)

where f : [0, T ]× Rm × Rm → Rm, m > 0 is a nonlinear term subject to some growth
conditions which we will provide further in the text. Solutions to (1.1) are obtained in
the space H̃2

0 := H1
0 ([0, 1],Rm) ∩H2 ([0, 1],Rm), i.e. are understood as classical a.e.

solutions. Due to the presence of term ẋ in the nonlinearity f , the problem under
consideration is not potential, which means that one cannot derive a classical Euler
action functional for it. However, we can propose some variational approach towards
(1.1) relying on minimization of the following action functional ϕ : H̃2

0 → R

ϕ (x) =
1∫

0

|ẍ (t) + f (t, x (t) , ẋ (t))|2 dt. (1.2)
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Direct calculation reveals that critical points to ϕ need not in general correspond to
solutions to (1.1) and also it does not seem possible to impose condition on f which
would guarantee that ϕ is weakly l.s.c. on H̃2

0 . This suggests that the direct method of
the calculus of variations is not applicable and also other variational approaches would
not work directly by the first observation. However one has the existence theorem
following directly form the Ekeland Variational Principle for which we need to recall
some preparatory results.

Let X,Y be Banach spaces, and assume that U ⊂ X is open. A mapping f : U → Y
is said to be Gâteaux differentiable at x0 ∈ U if there exists a continuous linear operator
f ′(x0) : X → Y such that for every h ∈ X

lim
t→0

f(x0 + th)− f(x0)
t

= f ′(x0)h.

Operator f ′(x0) is called the Gâteaux derivative of f at x0. An operator f : U → Y is
said to be Fréchet-differentiable at x0 ∈ U if there exists a continuous linear operator
f ′(x0) : X → Y such that

lim
‖h‖→0

‖f(x0 + h)− f(x0)− f ′(x0)h‖Y
‖h‖X

= 0.

Operator f ′(x0) is called the Fréchet derivative of operator f at x0. When f is
Fréchet-differentiable, it is continuous and Gâteaux differentiable. A mapping f is con-
tinuously Fréchet-differentiable if f ′ : X 3 x 7→ f ′(x) ∈ L (X,Y ) is continuous. If f is
continuously Gâteaux differentiable then it is also continuously Fréchet-differentiable
and thus it is called C1. We say that T : X → Y is a diffeomorphism if it is a bijection
and both T , T−1 are C1 mappings.

A Gâteaux differentiable functional J : X → R satisfies the Palais–Smale condition
if every sequence (un)n∈N such that (J(un))n∈N is bounded and J ′(un) → 0 in X∗,
has a convergent subsequence.
Theorem 1.1 ([6]). Let E be a Banach space and J : E → R be a C1 functional
which satisfies the Palais–Smale condition. Suppose in addition that J is bounded from
below. Then the infimum of J is achieved at some point u0 ∈ E and u0 is a critical
point of J , i.e. J ′(u0) = 0.

The above theorem may serve as a counterpart of the direct method of the calculus
of variations (see [12] for detailed description of the direct method) in case when the
functional is not weakly l.s.c. We recall that a bounded from below functional which
satisfies the Palais–Smale condition is necessarily coercive. Therefore we see, by the
Chain Rule and a direct calculation, that minimization of ϕ may lead to obtaining
solutions to (1.1) provided that operator

T : H̃2
0 → L2

defined (a.e. pointwisely on [0, 1]) by the following formula

T (x) = ẍ (·) + f (·, x (·) , ẋ (·)) (1.3)

has invertible derivative. Such a method is suggested by the following general result.
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Theorem 1.2 ([9]). Let B be a Banach space, H a Hilbert space. Let T : B → H be
a C1-mapping. Assume that:

(A1) for every y ∈ H functional B 3 x 7→ ‖T (x)−y‖2
H ∈ R satisfies the Palais–Smale

condition;
(A2) T ′(x) ∈ Isom(B,H) for every x ∈ B.

Then T is a diffeomorphism.

The above theorem is proved with the aid of Theorem 1.1 and the Mountain Pass
Lemma. For some direct application towards global implicit function theorem we
refer to [7, 8]. We would like to note that applications of Theorem 1.2, apart from
the work [2] where a second order Dirichlet problem together with its discretization
is considered, where provided for integral equations of various types, see [3, 9, 11].
General ideas concerning global invertibility via critical point theory methods are to
be found in [5, 10]. For solvability of second order problems by another version of
a global diffeomorphism theorem we refer to [14].

The approach proposed by us is different from already developed variational
approaches for problems with nonlinearity depending on the derivative. We can
mention paper [13] where the approach is based on variational methods combining
super- and sub-solution and the existence of critical points via descending flow. On
the other hand in [16] monotone interative technique based on the mountain pass
geometry is utilized. In [1] results are obtained with the use of Ricerri three critical
points theorem from [15].

This paper is organized as follows. In Section 2 we discuss some preparatory
material. Section 3 contains main existence result and finally in Section 4 we consider
slightly more general problem with non-zero boundary conditions and also provide
some examples.

2. AUXILIARY RESULTS

In this section we recall some background results which we believe are needed for the
understanding of the paper.

Assume that X = ×ki=1Xi, where Xi is a Banach space for i = 1, . . . , k. X is
supplied with a standard form, i.e. ‖·‖X =

∑k
i=1 ‖·‖Xi . For fixed u ∈ X we denote

ιu : Xi → X by formula ιu (x) = (u1 . . . , ui−1, x, ui+1, . . . , un). For fixed i = 1, . . . , k
we define πi : X → Xi by πi (x) = xi. We say that T has an i-th partial derivative
at point u if operator T ◦ ιu : Xi → Y is Fréchet differentiable. The derivative of
an operator T ◦ ιu at u will be denoted by ∂iT (u) and we will call it i-th partial
derivative of T at u. If ∂iT (x) exists and it is continuous for every i = 1, . . . , n, then
T is Fréchet differentiable at point x and

T ′ (x) =
n∑

i=1
∂iT (x) ◦ πi.
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Let V , X and Y be a Banach spaces. We recall the following result.

Theorem 2.1 ([17], Implicit Function Theorem). Let T : V ×X → Y be a C1-operator.
Assume that T (v0, x0) = 0 for some (v0, x0) ∈ V ×X and ∂2T (v0, x0) is an isomor-
phism. Then there exist open neighbourhoods of v0, x0, respectively Uv, Ux and unique
C1-function γ : Uv0 → Ux0 such that γ(v0) = x0 and T (v, γ(v)) = 0 for all v ∈ Uv.

The Implicit Function Theorem is true in a more general setting. However, the above
formulation is enough for our considerations.

If X is a normed space, ϕ ∈ X∗ and x ∈ X, then by 〈ϕ, x〉X∗,X we denote
the duality pair, i.e. the action of ϕ ∈ X∗ on an element x ∈ X.

Theorem 2.2 ([17]). Let H be a Hilbert space. If T : H → H∗ is linear, continuous
and strongly monotone, i.e. there exists c > 0 such that

〈Tx, x〉H∗,H > c‖x‖2
H

for every x ∈ H, then equation
Tx = y∗

has a unique solution x ∈ H for every y∗ ∈ H∗. In other words, T is an invertible
operator.

For the information on the underlying function space setting we refer to [4]. Let
us denote L2 := L2 ([0, 1],Rm) We recall that space H1 ([0, 1],Rm) consists of all
absolutely continuous functions x : [0, 1]→ Rm such that a weak derivative ẋ of x is
integrable with square on [0, 1]. Then

H1
0 ([0, 1],Rm) =

{
x ∈ H1 ([0, 1],Rm) : x (0) = x (1) = 0

}
.

H1
0 ([0, 1],Rm) is a Hilbert space equipped with a standard inner product

〈x, y〉H1
0

:=
1∫

0

〈ẋ (t)|ẏ (t)〉 dt = 〈ẋ|ẏ〉L2 ,

where 〈·|·〉 denotes an inner product in Rm. The norm in Rm is denoted as an absolute
value.

Since

H1
0 ([0, 1],Rm) ↪→ C ([0, 1],Rm)

we see that

H1
0 ([0, 1],Rm) ↪→ L∞ ([0, 1],Rm).

Moreover
‖x‖L∞ ≤ ‖x‖H1

0
and π ‖x‖L2 ≤ ‖x‖H1

0

for all x ∈ H1
0 ([0, 1],Rm).
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By H2 we denote those elements of H1 ([0, 1],Rm) whose second order weak
derivative exists and it is integrable with square. One can prove that H̃2

0 defined
in the Introduction can be equipped with an inner product 〈x|y〉

H̃2
0

:= 〈ẍ|ÿ〉L2 and it
becomes also a Hilbert space.

The following theorem shows that every weak solution to (1.1), i.e. such a function
x ∈ H1

0 ([0, 1],Rm) that
1∫

0

〈ẋ (t)|ẏ (t)〉 dt =
1∫

0

〈f (t, x (t) , ẋ (t))|y (t)〉 dt

for all y ∈ H1
0 ([0, 1],Rm) is a classical a.e. solution, i.e. an element of H̃2

0 ([0, 1],Rm).
Theorem 2.3 ([12], du Bois-Reymond). Let x ∈ L2 and y ∈ L1 ([0, 1],Rm) be such
that

1∫

0

〈x (t)|ϕ̇ (t)〉 dt = −
1∫

0

〈y (t)|ϕ (t)〉 dt

for all ϕ ∈ H1
0 ([0, 1],Rm). Then there exists c ∈ Rm such that

x (t) =
t∫

0

y(τ) dτ + c

for a.e. t ∈ [0, 1].
We need also some lemma which is necessary for the proper understanding of the

assumptions which we are going to impose and also for obtaining the main result.
Lemma 2.4. Assume that A ∈ L2 ([0, 1],L (Rm)) and B ∈ L∞ ([0, 1],L (Rm)) satisfy
the following conditions:
(L1) B (t) is symmetric or antisymmetric for a.e. t ∈ [0, 1], i.e.

〈B (t)u|v〉 = ±〈u|B (t) v〉
for all u, v ∈ Rm and a.e. t ∈ [0, 1];

(L2) there exist α ∈ (0, 1) and C < 1− α such that
〈(

4αA (t)±B2 (t)
)
u
∣∣u
〉
≤ π2C |u|2

for all u ∈ Rm and a.e. t ∈ [0, 1].
Then operator T : H1

0 ([0, 1],Rm)→
(
H1

0 ([0, 1],Rm)
)∗ defined by the following formula

〈Tx, y〉H1
0

:= 〈x|y〉H1
0
− 〈Bẋ|y〉L2 − 〈Ax|y〉L2

=
1∫

0

〈ẋ(t)|ẏ(t)〉 dt−
1∫

0

〈B(t)x(t)|y(t)〉 dt−
1∫

0

〈A(t)x(t)|y(t)〉 dt

is continuous and strongly monotone.
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Remark 2.5. If m = 1, then A and B are real-valued functions and conditions
(L1) and (L2) are equivalent to the following one:

(L3) there exists α ∈ (0, 1) such that A (t) + 1
4αB

2 (t) < π2 (1− α) for a.e. t ∈ [0, 1].

Proof of Lemma 2.4. First, we observe that T is well defined. Indeed for fixed
x, y ∈ H1

0 ([0, 1],Rm)
∣∣∣〈Tx, y〉H1

0

∣∣∣ =
∣∣∣〈x|y〉H1

0
− 〈Bẋ|y〉L2 − 〈Ax|y〉L2

∣∣∣
≤ ‖x‖H1

0
‖y‖H1

0
+ ‖Bẋ‖L2 ‖y‖L2 + ‖Ax‖L2 ‖y‖L2

≤
((

1 + 1
π ‖B‖L∞

)
‖x‖H1

0
+ 1

π ‖A‖L2 ‖x‖L∞
)
‖y‖H1

0
.

By the above we see that T is also continuous. Now we show that T is strongly
monotone. Using (L1) and (L2) we obtain

〈Tx, x〉H1
0

= 〈ẋ|ẋ〉L2 − 〈Bẋ|x〉L2 − 〈Ax|x〉L2

= (1− α) 〈ẋ|ẋ〉L2 + α 〈ẋ|ẋ〉L2 ± 〈ẋ|Bx〉L2

+ 1
4α 〈Bx|Bx〉L2 − 1

4α 〈Bx|Bx〉L2 − 〈Ax|x〉L2

=
∥∥∥
√
αẋ± 1

2
√
α
Bx
∥∥∥

2
+ (1− α) ‖x‖2

H1
0
∓ 1

4α
〈
B2x

∣∣x
〉
L2 − 〈Ax|x〉L2

> (1− α) ‖x‖2
H1

0
−
〈
Ax± 1

4αB
2x
∣∣x
〉
L2 > (1− α) ‖x‖2

H1
0
− Cπ2 ‖x‖L2

> (1− α− C) ‖x‖H1
0
.

Finally, using Theorem 2.2 we obtain the assertion.

3. MAIN RESULT

In this section we formulate the main existence result. The proof relies on checking that
assumptions of Theorem 1.2 are satisfied, that is we need to define suitable functional
suggested by formula (1.2) and then show that it satisfies the Palais–Smale condition
and that local invertibility holds for the derivative of the solution operator, i.e. that
conditions (A1) and (A2) of Theorem 1.2 are satisfied.

3.1. THE ASSUMPTIONS AND SOME LEMMAS

Let m ≥ 1 and let f : [0, 1] × Rm × Rm → Rm. By f ′x and f ′y we denote partial
derivatives of f with respect to the second and third argument. We will assume that

(H1) f (·, x, y) is Lebesgue-measurable on [0, 1] for every x, y ∈ Rm;
(H2) f (t, ·, y) is of class C1 on Rm for a.e. t ∈ [0, 1] and every y ∈ Rm;
(H3) f (t, x, ·) is of class C1 on Rm for a.e. t ∈ [0, 1] and every x ∈ Rm;
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(H4) there exist functions a, b0, b1 ∈ L2 ([0, 1],R+) such that ‖b0 + πb1‖L2 < π and

|f (t, x, y)| ≤ a (t) + b0 (t) |x|+ b1 (t) |y|
for a.e. t ∈ [0, 1] and every x, y ∈ Rm;

(H5) there exist functions ψ0 ∈ L2 ([0, 1],R+) and ψ1 ∈ L∞ ([0, 1],R+) and
g0, g1 ∈ C (Rm × Rm,R+) such that

|f ′x (t, x, y)|L(Rm) ≤ ψ0 (t) g0 (x, y) ,
∣∣f ′y (t, x, y)

∣∣
L(Rm) ≤ ψ1 (t) g1 (x, y)

for a.e. t ∈ [0, 1] and every x, y ∈ Rm;
(H6) matrix f ′y (t, x, y) is either symmetric or antisymmetric for a.e. t ∈ [0, 1] and

every x, y ∈ Rm;
(H7) there exist α ∈ (0, 1) and C < 1− α such that:

– if f ′y (t, x, y) is symmetric, then
〈

4αf ′x (t, x, y)u+
(
f ′y (t, x, y)

)2
u
∣∣∣u
〉
≤ Cπ2|u|2,

– if f ′y (t, x, y) is antisymmetric, then
〈

4αf ′x (t, x, y)u−
(
f ′y (t, x, y)

)2
u
∣∣∣u
〉
≤ Cπ2|u|2

for a.e. t ∈ [0, 1] and every x, y, u ∈ Rm.
Lemma 3.1. Suppose that f : [0, 1]×Rm×Rm → Rm satisfies assumptions (H1)–(H3).
If x : [0, 1] → Rm is an a.e. differentiable function with the Lebesgue-measurable
derivative ẋ, then f (·, x (·) , ẋ (·)) is Lebesgue-measurable.
Proof. Let x and ẋ be as in the assumptions. There exist sequences (xn)n∈N, (yn)n∈N
of simple functions such that xn → x and yn → ẋ a.e. on [0, 1]. Then f (·, xn (·) , yn (·))
is obviously Lebesgue-measurable for every n ∈ N and by continuity of f we
see that f (t, xn (t) , yn (t)) → f (t, x (t) , ẋ (t)) for a.e. t ∈ [0, 1] which means that
f (·, x (·) , ẋ (·)) is Lebesgue-measurable.

We define operator F : H̃2
0 → L2 (a.e. pointwisely on [0, 1]) by

F (x) = f (·, x (·) , ẋ (·)) (3.1)

and for simplicity of notation for a fixed x ∈ H̃2
0 we denote

F0 (x) = f ′x (·, x (·) , ẋ (·)) ,

F1 (x) = f ′y (·, x (·) , ẋ (·)) .
Lemma 3.2. Assume that (H1)–(H3) and (H5) hold. Then operator F defined by (3.1)
is a C1−mapping with a derivative at any fixed x ∈ H̃2

0 given by the formula

F ′ (x) ξ = F0 (x) ξ + F1 (x) ξ̇

for all ξ ∈ H̃2
0 .



138 Michał Bełdziński and Marek Galewski

Proof. We could treat F as a composition of mappings

H̃2
0 3 x 7→ (x, ẋ) ∈ H̃2

0 ×H1 ([0, 1],Rm)

and
H̃2

0 ×H1 ([0, 1],Rm) 3 (x, y) 7→ f (·, x(·), y(·)) ∈ L2

and then use the Chain Rule.

3.2. PALAIS–SMALE CONDITION AND LOCAL INVERTIBILITY

We fix y ∈ L2 and define similarly to (1.2) functional ϕ : H̃2
0 → R by

ϕ (x) := ‖T (x)− y‖2
L2 =

1∫

0

|ẍ (t) + f (t, x (t) , ẋ (t))− y (t)|2 dt. (3.2)

Lemma 3.3. Assume that (H1)–(H5) hold. Then functional ϕ given by (3.2) is
coercive on H̃2

0 .

Proof. Fix any x ∈ H̃2
0 . Using assumption (H4) and

‖ẋ‖∞ ≤ ‖x‖H̃2
0
and ‖x‖∞ ≤

1
π
‖x‖

H̃2
0

we obtain that

‖F (x)‖L2 =




1∫

0

|f (t, x (t) , ẋ (t))|2 dt




1
2

≤




1∫

0

|a (t) + b0 (t) |x (t)|+ b1 (t) |ẋ (t)||2 dt




1
2

≤ ‖a‖L2 +




1∫

0

|b0 (t) ‖x‖∞ + b1 (t) ‖ẋ‖∞|
2
dt




1
2

= ‖a‖L2 + ‖x‖
H̃2

0

∥∥ b0
π + b1

∥∥
L2 .

Hence, for γ :=
∥∥ b0
π + b1

∥∥
L2 < 1 and δ := ‖a‖L2 we see that

‖F (x)‖L2 ≤ γ ‖x‖H̃2
0

+ δ.

Therefore, for every x ∈ H̃2
0 we obtain

‖ẍ+ F (x)− y‖L2 > ‖ẍ‖L2 − ‖F (x)‖L2 − ‖y‖L2 > (1− γ) ‖x‖
H̃2

0
− δ − ‖y‖L2 .

Consequently, the assertion holds.
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From the above Lemma we see that any Palais–Smale sequence (xn)n∈N ⊂ H̃2
0

for functional ϕ, that is such a sequence for which
(a) (ϕ (xn))n∈N is bounded;
(b) limn→∞ ϕ′ (xn) = 0(

H̃2
0

)∗

is necessarily bounded. Then (xn)n∈N has a weakly convergent subsequence which
we denote by (xn)n∈N and its limit by x0. Thus xn → x0 and ẋn → ẋ0 strongly in
C ([0, 1],Rm), possibly for a subsequence. This observation simplifies checking that
the Palais–Smale condition is satisfied.
Lemma 3.4. Assume that (H1)–(H5) are satisfied. Then ϕ given by (3.2) satisfies
the Palais–Smale condition.
Proof. Let (xn)n∈N ⊂ H̃2

0 be a Palais–Smale sequence. Therefore, (xn)n∈N can be
assumed to have the above mentioned properties.

Since xn ⇀ x0 in H̃2
0 , then xn → x0 and ẋn → ẋ0 strongly in C ([0, 1],Rm).

A direct calculation yields

ϕ′ (xn) (xn − x0)− ϕ′ (x0) (xn − x0) =
1∫

0

|ẍn(t)− ẍ0(t)|2 dt+
7∑

k=1
rk (xn) ,

where

r1 (xn) =
1∫

0

(ẍ0(t)− f (t, x0 (t) , ẋ0 (t))) f ′x (t, x0 (t) , ẋ0 (t)) (xn(t)− x0(t)) dt,

r2 (xn) =
1∫

0

(ẍ0(t)− f (t, x0 (t) , ẋ0 (t))) f ′y (t, x0 (t) , ẋ0 (t)) (ẋn(t)− ẋ0(t)) dt,

r3 (xn) =
1∫

0

(f (t, xn (t) , ẋn (t))− ẍn(t)) f ′x (t, xn (t) , ẋn (t)) (xn(t)− x0(t)) dt,

r4 (xn) =
1∫

0

(f (t, xn (t) , ẋn (t))− ẍn(t)) f ′y (t, x (t) , ẋ (t)) (ẋn(t)− ẋ0(t)) dt,

r5 (xn) =
1∫

0

(f (t, x0 (t) , ẋ0 (t))− f (t, xn (t) , ẋn (t))) (ẍn(t)− ẍ0(t)) dt,

r6 (xn) =
1∫

0

y(t) (f ′x (t, x0 (t) , ẋ0 (t))− f ′x (t, xn (t) , ẋn (t))) (xn(t)− x0(t)) dt,

r7 (xn) =
1∫

0

y(t)
(
f ′y (t, x0 (t) , ẋ0 (t))− f ′y (t, xn (t) , ẋn (t))

)
(ẋn(t)− ẋ0(t)) dt.
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Following the proof of Lemma 3.5 from [2] it is easy to observe that ri (xn)→ 0 for
i = 1, . . . , 7 whenever n→∞.

Lemma 3.5. Assume that (H1)–(H7) hold. Then T ′(x) is invertible at every fixed
x ∈ H̃2

0 .

Proof. Let us fix any x ∈ H̃2
0 . We recall that

T ′ (x) ξ = ξ̈ + F ′ (x) ξ = ξ̈ + F0 (x) ξ + F1 (x) ξ̇

for any ξ ∈ H̃2
0 . Then T ′ (x) is invertible at x if and only if the following Dirichlet

problem {
ξ̈ + f ′x (t, x (t) , ẋ (t)) ξ + f ′y (t, x (t) , ẋ (t)) ξ̇ = y(t),
ξ (0) = ξ (1) = 0,

(3.3)

has a unique solution for every fixed y ∈ L2. By Theorem 2.3 we can consider
an equivalent weak formulation

1∫

0

ξ̇(t)ϕ̇(t)dt−
1∫

0

f ′x (t, x (t) , ẋ (t)) ξ(t)ϕ(t)dt

−
1∫

0

f ′y (t, x (t) , ẋ (t)) ξ̇(t)ϕ(t)dt =
1∫

0

y(t)ϕ(t)dt (3.4)

for all ϕ ∈ H1
0 ([0, 1],Rm).

For a fixed x ∈ H1
0 ([0, 1],Rm) we define operator

Tx : H1
0 ([0, 1],Rm)→

(
H1

0 ([0, 1],Rm)
)∗

by

〈Txξ, ϕ〉H1
0

=
1∫

0

ξ̇(t)ϕ̇(t)dt−
1∫

0

f ′x (t, x (t) , ẋ (t)) ξ(t)ϕ(t)dt

−
1∫

0

f ′y (t, x (t) , ẋ (t)) ξ̇(t)ϕ(t)dt

= 〈ξ|ϕ〉H1
0
− 〈F0 (x) ξ|ϕ〉L2 −

〈
F1 (x) ξ̇

∣∣ϕ
〉
L2

for all ξ, ϕ ∈ H1
0 ([0, 1],Rm). Let us observe that Tx is well defined, i.e.

Txξ ∈
(
H1

0 ([0, 1],Rm)
)∗ for all ξ ∈ H1

0 ([0, 1],Rm).
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Indeed, let ξ ∈ H1
0 ([0, 1],Rm) be fixed. Since Txξ is linear it is enough to show

that it is also bounded. Using the Poincaré inequality we obtain
∣∣∣〈Txξ, ϕ〉H1

0

∣∣∣ ≤
∣∣∣〈ξ|ϕ〉H1

0

∣∣∣+ |〈F0 (x) ξ|ϕ〉L2 |+
∣∣〈F1 (x) ξ̇

∣∣ϕ
〉
L2

∣∣

≤ ‖ξ‖H1
0
‖ϕ‖H1

0
+ ‖F0 (x) ξ‖L2 ‖ϕ‖L2 +

∥∥F1 (x) ξ̇
∥∥
L2 ‖ϕ‖L2

≤
(
‖ξ‖H1

0
+ ‖F0 (x) ξ‖L2 +

∥∥F1 (x) ξ̇
∥∥
L2

)
‖ϕ‖H1

0
.

Fix any y ∈ L2. Observe that functional y∗ : H1
0 ([0, 1],Rm)→ R given by

y∗ (ϕ) =
1∫

0

ϕ(t)y(t) dt

is linear and by the Poincaré inequality it is also continuous on H1
0 ([0, 1],Rm). Hence, if

we show that problem Txξ = y∗ has a unique solution for every y∗ ∈
(
H1

0 ([0, 1],Rm)
)∗,

then we know that problem (3.4) has a unique solution for every y ∈ L2. In order to
prove this assertion by Theorem 2.2 it is enough to show that Tx is strongly monotone.
We see that by (H6)–(H7) the assumptions (L1) and (L2) of Lemma 2.4 are satisfied.
This observation shows that T ′(x) is strongly monotone. Since it is also continuous by
Theorem 2.2 we see that equation (3.4) is uniquely solvable. Thus, by Theorem 2.3,
problem (3.3) is uniquely solvable.

3.3. THE EXISTENCE RESULT

Finally, using Theorem 1.2 and Lemmas 3.4 and 3.5 we obtain

Theorem 3.6. Assume that (H1)–(H7) hold. Then problem (1.1) has a unique solution.

We see also that in fact a more general theorem can be obtained

Theorem 3.7. Assume that (H1)–(H7) hold. Then operator T defined by (1.3) is
a diffeomorphism.

4. FINAL COMMENTS AND EXAMPLES

Now let us fix v, w ∈ Rm and consider, under assumptions (H1)–(H7), the following
problem {

−ẍ = f (t, x, ẋ) ,
x (0) = v, x (1) = w.

(4.1)

Defining hvw : [0, 1]→ Rm by the formula

hvw (t) := (w − v) t+ v
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we observe that {
−ẍ = f (t, x+ hvw (t) , ẋ+ w − v) ,
x (0) = x (1) = 0

(4.2)

is uniquely solvable if and only if problem (4.1) has an unique solution. Moreover,
if φ is solution to (4.2), then φ+ hvw is solution to (4.1).

See that if f satisfies assumptions (H1)–(H7), then function

[0, 1]× Rm × Rm 3 (t, x, y) 7→ f (t, x+ hvw (t) , y + w − v) ∈ Rm

satisfies this assumptions as well for every fixed v, w ∈ Rm. We define a C1-mapping
S : Rm × Rm × H̃2

0 → L2 by formula

S (v, w, x) := ẍ (·)− f (·, x (·) + hvw (·) , ẋ (·) + w − v) .

Reasoning exactly as previously we obtain a result which guarantees solvability of (4.2).
Lemma 4.1. Fix any v, w ∈ Rm. If f satisfies (H1)–(H7), then S(v, w, ·) is a diffeo-
morphism.

Since for every v, w ∈ Rm problem (4.2) is uniquely solvable, there exists an global
implicit function γ for S, i.e. there is

γ : Rm × Rm 3 (v, w) 7→ (S(v, w, ·))−1 (0) ∈ H̃2
0 (4.3)

such that S (v, w, γ(v, w)) = 0 for every v, w ∈ Rm. Using Lemma 4.1 and the Implicit
Function Theorem we obtain the following lemma.
Lemma 4.2. Assume that (H1)–(H7) hold. Then function γ given by (4.3) is of
class C1.

Define Λ : Rm × Rm → H2 by formula Λ(v, w) = γ(v, w) + hvw. See that operator
Λ maps pair (v, w) into solution of (4.1). Using Lemma 4.2 we easily obtain
Theorem 4.3. Assume that (H1)–(H7) hold. Then operator Λ is of class C1.

We give examples of functions which satisfies assumptions (H1)–(H7).
Example 4.4. For m = 1, f1 : [0, 1]× R× R→ R given by

f1 (t, x, y) = x+ y
2 + cos(x) cos(y)

satisfies assumptions (H1)–(H7).
For m = 2 we define f2 : [0, 1]× R2 × R2 → R2 by

f2(x1, x2, y1, y2) =
(
y1
2 + sin(x2 + y1), x2 + cos(x1 + y2)

)
.

We see that f2 satisfies assumptions (H1)–(H7). See that derivative of f2 with respect
to (y1, y2) reads

f ′2|(y1,y2)(x1, x2, y1, y2) =




1
2 + cos(x2 + y1) 0

0 − sin(x1 + y2)


 .

and it is symmetric.
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Taking f3 : [0, 1]× R2 × R2 → R2 given by

f3(x1, x2, y1, y2) =
(
y2
2 + sin(x2 + y1),−y1

2 + cos(x1 + y2)
)
.

we have that derivative of f3 with respect to (y1, y2) is antisymmetric. Moreover,
f3 satisfies assumptions (H1)–(H7).

REFERENCES

[1] G.A. Afrouzi, A. Hadjian, V.D. Rădulescu, A variational approach of Sturm–Liouville
problems with the nonlinearity depending on the derivative, Bound. Value Probl. 2015
(2015) 81.

[2] M. Bełdziński, M. Galewski, Global diffeomorphism theorem applied to the solv-
ability of discrete and continuous boundary value problems, J. Diff. Equ. Appl 24
(2018) 2, 277–290.

[3] D. Bors, A. Skowron, S. Walczak, System described by Volterra type integral operators,
Dys. Cont. Dyn System B 19 (2014), 2401–2416.

[4] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,
Springer, 2010.

[5] I. Ekeland, An inverse function theorem in Fréchet spaces, Ann. Inst. Henri Poincaré,
Anal. Non Lineaire 28 (2011) 1, 91–105.

[6] D.G. Figueredo, Lectures on the Ekeland Variational Principle with Applications and
Detours, Preliminary Lecture Notes, SISSA, 1988.

[7] D. Idczak, A global implicit function theorem and its applications to functional equations,
Discrete Contin. Dyn. Syst., Ser. B 19 (2014) 8, 2549–2556.

[8] D. Idczak, On a generalization of a global implicit function theorem, Adv. Nonlinear
Stud. 16 (2016) 1, 87–94.

[9] D. Idczak, A. Skowron, S. Walczak, On the diffeomorphisms between Banach and Hilbert
spaces, Adv. Nonlinear Stud. 12 (2012) 1, 89–100.

[10] G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann. Inst.
Henri Poincaré, Anal. Non Linéaire 11 (1994) 2, 189–209.

[11] M. Majewski, Control system defined by some integral operator, Opuscula Math. 37
(2017) 2, 313–325.

[12] J. Mawhin, Problemes de Dirichlet Variationnels Non Linéaires, Séminaire de Mathé-
matiques Supérieures, vol. 104, Montreal, 1987.

[13] D. Motreanu, M. Tanaka, Multiple existence results of solutions for quasilinear elliptic
equations with a nonlinearity depending on a parameter. Ann. Mat. Pura Appl. 193
(2014) 5, 1255–1282.

[14] M. Rădulescu, S. Rădulescu, Local inversion theorems without assuming continuous
differentiability, J. Math. Anal. Appl. 138 (1989) 2, 581–590.



144 Michał Bełdziński and Marek Galewski

[15] B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009), 3084–3089.

[16] C. Torres Ledesma, Existence of solutions for fractional Hamiltonian systems with
nonlinear derivative dependence in R, J. Fract. Calc. Appl. 7 (2016) 2, 74–87.

[17] E. Zeidler, Applied Functional Analysis. Main Principles and Their Applications, Applied
Mathematical Sciences, vol. 109, New York, Springer-Verlag, 1995.

Michał Bełdziński
beldzinski.michal@outlook.com

Lodz University of Technology
Institute of Mathematics
Wólczańska 215, 90-924 Łódź, Poland

Marek Galewski
marek.galewski@p.lodz.pl

Lodz University of Technology
Institute of Mathematics
Wólczańska 215, 90-924 Łódź, Poland

Received: April 27, 2018.
Revised: November 5, 2018.
Accepted: November 6, 2018.


