PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Responding to spills of marine distillate fuels

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current spill response capability in Finland is built to respond to oil spills caused by heavy fuel oils and the most transported oil cargoes. However, the implementation of the Sulphur Directive in 2015 changed the fuel profiles of the ships: prior to the new regulation ships operating in the Baltic Sea mainly used heavy fuel oil (HFO), whereas now ships use marine gas oil (MGO DMA) or marine diesel (MDO DMB) known as marine distillate fuels. This paper reviews the effectiveness of the current recovery techniques in responding to spills of marine distillate fuels based on the oil recovery field tests. The results indicate that conventional recovery techniques are only partially applicable to marine distillate fuels, which calls for a reassessment of the marine oil spill response capability and further research. The use and availability of low-carbon marine fuels will continue to increase as emission regulations become more stringent. This will require a continuous assessment of the oil recovery capabilities and the adaptation of spill response preparedness accordingly.
Twórcy
autor
  • South‐Eastern Finland University of Applied Sciences, Kotka, Finland
Bibliografia
  • [1] Helcom Recommendation 22/2. Restricted use of chemical agents and other non‐mechanical means in oil combatting operations in the Baltic Sea area. Adopted 21 March 2001.
  • [2] Helcom Recommendation 19/17. Measures in order to combat pollution from offshore units. Adopted 24 March 1998.
  • [3] Jalkanen J.‐P., Majamäki, E. & Johansson, L. 2020. Emissions from Baltic Sea shipping in 2006–2020. Maritime Working Group Meeting document MARITIME 21‐2021 of Baltic Marine Environment Protection Commission.
  • [4] IMO 2005. Manual on Oil Pollution. Combating Oil Spills. Section IV. International Maritime Organization, London.
  • [5] ITOPF 2012. Response to Marine Oil Spills. Second edition. The International Tanker Owner’s Pollution Federation Limited.
  • [6] ITOPF 2014. Use of skimmers in oil pollution response. Technical information paper, no. 5. The International Tanker Owners Pollution Federation Limited.
  • [7] Fingas, M. 2013. The Basics of Oil Spill Cleanup. CRS Press.
  • [8] Farooq, U., Taban, I. & & Daling, P. 2018. Study of the oil interaction towards oil spill recovery skimmer material: Effect of the oil weathering and emulsification properties. Marine Pollution Bulletin, 135 (2018), 119–128.
  • [9] Hollebone, B.P. 2015. Oil Physical Properties: Measurement and Correlation. Handbook of Oil Spill Science and Technology. Fingas, M. (ed.) John Wiley & Sons, Inc., 39–50.
  • [10] Broje, V. & Keller, A. 2007. Effect of operational parameters on the recovery rate of an oleophilic drum skimmer. Journal of Hazardous Materials, vol. 148 (2007), 136–143.
  • [11] El‐Zahaby, AM., Kabecl, A., Bakry, A. & Khaira, A. 2008. Investigation of Rotating Disk Skimmer Hydrodynamic Performance during Oil Spills Recovery. Mansoura Engineering Journal, vol. 33. no. 1.
  • [12] Koops, W., Zeinstra, M. & Heins, S. 2014. Oil Spill Response Manual. NHL University of Applied Sciences.
  • [13] IPIECA‐IOGP 2015. At‐sea containment and recovery. Good practice guidelines for incident management and emergency response personnel. IOGP Report 522.
  • [14] IMO 2016. Use of Sorbents for Spill Response. An Operational Guide. IMO Publication. International Maritime Organization, London.
  • [15] Engman, A. 2023.Techical Account Manager, Neste Corporation. Written notice 6.2.2023.
  • [16] ASTM International. Standard Test Method for Determining a Measured Nameplate Recovery Rate of Stationary Oil Skimmer Systems (F2709‐18).
  • [17] IPIECA‐IOGP 2013. The use of decanting during offshore oil spill recovery operations. Oil & Gas Producers and International Petroleum Industry Environmental Conservation Association.
  • [18] Halonen, J. & Kettunen, M. 2022. Keräystuoton ennakointi öljyntorjunnassa. Xamk READ, Research, Education and Regional Development, vol. 3/2022.
  • [19] Kystverket 2022. Work Package 4. Task 4.1 Mechanical Recovery, Reports from IMAROS.
  • [20] Fingas, M. & Fieldhouse, B. 2015. Water‐in‐oil emulsions: Formation and Prediction. Handbook of Oil Spill Science and Technology. Fingas, M. (ed.) John Wiley & Sons, Inc., 225–270.
  • [21] Lehikoinen, A., Luoma, E., Mäntyniemi, S. & Kuikka, S. 2013. Optimizing the recovery efficiency of Finnish oil combating vessels in the Gulf of Finland using Bayesian networks. Environmental Science & Technology, vol. 47 (4), 1792–1799.
  • [22] Etkin, D. 2015. Risk analysis and prevention. Handbook of Oil Spill Science and Technology. Fingas, M. (ed.) John Wiley & Sons, Inc., 15–35.
  • [23] Halonen, J., Altarriba, E. & Kuosa, M. 2021. Tools for oil spill response waste management and logistic support. A field exercise testing the RFID technology and QR codes. IOSC 2021 Conference Proceedings.
  • [24] Hietala, M. & Lampela, K. 2007. Öljyntorjuntavalmius merellä ‐ työryhmän loppuraportti. Suomen ympäristö 41/2007. Finnish Environment Institute, Helsinki. 683.
  • [25] Aps, R., Sawano, N., Hamada, S. & Fetissov, M. 2010. Bayesian inference in oil spill response management. WIT Transactions on Information and Communication Technologies, vol. 43.
  • [26] Helle, I., Lecklin, T., Jolma, A. & Kuikka, S. 2011. Modelling the effectiveness of oil combating from an ecological perspective ‐ a Bayesian network for the Gulf of Finland; The Baltic Sea. Journal of Hazardous Materials, vol. 185 (1), 182–192.
  • [27] Lu, L., Goerlandt, F., Valdez Banda, O., Kujala, P., Höglund, A. & Arneborg, L. 2019. A Bayesian Network risk model for assessing oil spill recovery effectiveness in the ice‐covered Northern Baltic Sea. Marine Pollution Bulletin, vol. 139, 440–458.
  • [28] Parviainen, T., Kuikka, S. & Haapasaari, P. 2022. Enhancing science‐policy interface in marine environmental governance: Oil spill response models as boundary objects in the Gulf of Finland, Baltic Sea. Marine Policy, vol. 135 (2022) 104863.
  • [29] HELCOM 2022. HELCOM Annual report on discharges observed during aerial surveillance in the Baltic Sea 2021. Helsinki Commission.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baf60e98-d675-4ca2-acba-642907145ced
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.