PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The microstructure and creep properties of as-cast Mg-Sn-Si-(Al) magnesium alloys

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnesium alloys containing rare earth metals exhibit good creep resistance up to 300 °C and good tensile properties at ambient temperature. The high cost of rare earth has led to studies regarding the creep resistance of Mg alloys with cheap alloying elements (Sn, Ca, Si) that could be substituted for Mg-RE alloys. In this paper, the influence of Si and Al on microstructure and mechanical properties of Mg-7Sn alloy was investigated using optical (LM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), tensile tests and creep tests at 200–250 °C. Microstructure of as-cast alloys consists of α-Mg matrix and intermetallic compounds at the interdendritic regions. Heat treatment consisting of solid solution treatment and ageing increases the tensile properties at ambient temperature due to the precipitation of the fine Mg2Sn phase. The creep resistance of aged Mg-7Sn alloy is poor. The addition of Si and Al to Mg-7Sn alloy has resulted in improving the creep resistance due to the refinement of Mg2Sn phase and the appearance of Mg2Si phase at the grain boundaries. The Mg-7Sn-1Si alloy exhibits better creep resistance at 200 °C than Mg-7Sn-5Si and Mg-7Sn-5Si-2Al alloys. The Mg-7Sn alloys with 5% Si have better creep properties at 250 °C in comparison to Mg-7Sn-1Si alloy.
Rocznik
Strony
481--493
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Faculty of Materials Science, Silesian University of Technology, Katowice, Poland
Bibliografia
  • [1] Mo N, Tan Q, Bermingham M, Huang Y, Dieringa H, Hort N, Zhang M-X. Current development of creep-resistant magnesium cast alloys: a review. Mater Design. 2018;155:422–42.
  • [2] Luo AA. Recent magnesium alloy development for elevated temperature applications. Int Mater Rev. 2004;49:13–30.
  • [3] Friedrich H, Mordike BL. Magnesium technology, metallurgy design data, applications. Berlin Heidelberg: Springer-Verlag; 2006.
  • [4] Baril E, Labelle P, Pekguleryuz M. Elevated temperature Mg-Al-Sr: creep resistance, mechanical properties, and microstructure. J Met. 2003;55:34–9.
  • [5] Ninomiya R, Ojiro T, Kubota K. Improved heat resistance of Mg-Al alloys by the Ca addition. Acta Metall Mater. 1995;43:669–74.
  • [6] Pettersen G, Westengen H, Høier R, Lohne O. Microstructure of a pressure die cast magnesium-4wt.% aluminum alloy modified with rare earth additions. Mater Sci Eng A. 1996;207:115–20.
  • [7] Podosek M, Lorimer G. The influence of intergranular microstructure of Mg-Zn-RE alloys on properties at elevated temperatures. Arch Metall. 2000;45:47–55.
  • [8] P. Lyon, Processing Review for Elektron WE43, Launch of Elektron 21, Paris&London, November 2003.
  • [9] Celikin M, Kaya AA, Pekguleryuz M. The role of α-Mn precipitation on the creep mechanisms of Mg-Sr-Mn. Mater Sci Eng A. 2012;534:129–41.
  • [10] M. Celikin, The creep behaviour of magnesium-manganese based alloys, PhD thesis, McGill University, Montréal, Canada, 2012.
  • [11] Zheng N, Wang HY, Gu ZH, Wang W, Jiang QC. Development of an effective modifier for hypereutectic Mg–Si alloys. J Alloys Compd. 2008;463:L1–L4.
  • [12] Mirshahi F, Meratian M. High temperature tensile properties of modified Mg/Mg2Si in situ composite. Mater Des. 2012;33:557–62.
  • [13] Huang Y, Dieringa H, Kainer KU, Hort N. Understanding effects of microstructural inhomogeneity on creep response-new approaches to improve the creep resistance in magnesium alloys. J Magnes Alloy. 2014;2:124–32.
  • [14] Mendis CL, Bettles CJ, Gibson MA, Gorsse S, Hutchinson CR. Refinement of precipitate distributions in an age-hardenable Mg–Sn alloy through microalloying. Philos Mag Lett. 2006;86:443–56.
  • [15] Rzychoń T, Dybowski B. The influence of aluminum on the microstructure and hardness of Mg-5Si-7Sn alloy. Arch Metall Mater. 2016;61:425–32.
  • [16] Lu YZ, Wang QD, Zeng XQ, Zhu YP, Ding WJ. Behavior of Mg–6Al–xSi alloys during solution heat treatment at 420°C. Mater Sci Eng A. 2001;301:255–8.
  • [17] Kim YK, Do Kim H, Kim WT, Kim DH. Precipitation of DO19type metastable phase in Mg–Sn alloy. Mater Lett. 2013;113:50–3.
  • [18] Mendis CL, Bettles CJ, Gibson MA, Hutchinson CR. An enhanced age hardening response in Mg–Sn based alloys containing Zn. Mater Sci Eng A. 2006;435–436:163–71.
  • [19] Zhang M, Zhang W-Z, Zhu GZ. The morphology and crystallog-raphy of polygonal Mg2Sn precipitates in a Mg–Sn–Mn–Si alloy. Scr Mater. 2008;59:866–9.
  • [20] Huang X, Zhang W, Ma Y, Yin M. Enhancement of hardening and thermal resistance of Mg–Sn-based alloys by addition of Cu and Al. Philos Mag Lett. 2014;94:460–9.
  • [21] Sasaki TT, Elsayed FR, Nakata T, Ohkubo T, Kamado S, Hono K. Strong and ductile heat-treatable Mg–Sn–Zn–Al wrought alloys. Acta Mater. 2015;99:176–86.
  • [22] Zhang M, Zhang W, Zhu G, Yu K. Crystallography of Mg2Sn precipitates in Mg-Sn-Mn-Si alloy. Trans Nonferrous Met Soc China. 2007;17:1428–32.
  • [23] Elsayed FR, Sasaki TT, Mendis CL, Ohkubo T, Hono K. Compositional optimization of Mg–Sn–Al alloys for higher age harden-ing response. Mater Sci Eng A. 2013;566:22–9.
  • [24] Behdad S, Zhou L, Henderson HB, Manuel MV, Sohn Y, Agarwal A, Boesl B. Improvement of aging kinetics and precipitate size refinement in Mg–Sn alloys by hafnium additions. Mater Sci Eng A. 2016;651:854–8.
  • [25] Humaun Kabir A, Su J, Sanjari M, Jung I-H, Yue S. Age-hardening response of Mg-Al-Sn Alloys. Mater Sci Forum. 2015;828–829:250–5.
  • [26] Son H, Lee J, Jeong H, Konno TJ. Effects of Al and Zn additions on mechanical properties and precipitation behaviors of Mg–Sn alloy system. Mater Lett. 2011;65:1966–9.
  • [27] Caceres CH, Rovera DM. Solid solution strengthening in concentrated Mg–Al alloys. J Light Met. 2001;1:151–6.
  • [28] Dieter GE, Bacon DJ. Mechanical metallurgy, vol. 3. New York: McGraw-hill; 1986.
  • [29] Kassner ME, Pérez-Prado MT. Fundamentals of creep in metals and alloys. New York: Elsevier; 2004.
  • [30] Watanabe H, Tsutsui H, Mukai T, Kohzu M, Tanabe S, Higashi K. Deformation mechanism in a coarse-grained Mg–Al–Zn alloy at elevated temperatures. Int J Plast. 2001;17(3):387–97.
  • [31] Watanabe H, Tsutsui H, Mukai T, Kohzu M, Tanabe S, Higashi K. Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy. Acta Mater. 1999;47(14):3753–8.
  • [32] Somekawa H, Hirai K, Watanabe H, Takigawa Y, Higashi K. Dislocation creep behavior in Mg–Al–Zn alloys. Mater Sci Eng A. 2005;407(1–2):53–61.
  • [33] Athul KR, Pillai UTS, Srinivasan A, Pai BC. A review of different creep mechanisms in Mg alloys based on stress exponent and activation energy. Adv Eng Mater. 2016;18(5):770–94.
  • [34] Chelliah NM, Kraemer L, Singh H, Surappa MK, Raj R. Stress–rupture measurements of cast magnesium strengthened by in-situ production of ceramic particles. J Magnes Alloy. 2017;5(2):225–30.
  • [35] Kanga YH, Wang XX, Zhang N, Yana H, Chen RS. Effect of initial temper on the creep behavior of precipitation–hardened WE43 alloy. Mater Sci Eng A. 2017;689:419–26.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baf500be-488d-4888-9f13-f90fe40731f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.