PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of external perturbations on postural control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
External factors can disrupt postural control, but the intricate workings of the postural control system enable an appropriate response. This study seeks to assess how external perturbations affect postural control. Methods: Twenty women participated in study, which consisted four trials involved quiet standing and experiencing induced perturbations by being struck with a boxing bag from the back, right, and left sides, respectively. The center of pressure (CoP) path length was recorded for each of the mentioned trials. Sample Entropy (SampEn), Lyapunov Exponent (LyE), and Fractal Dimension (FD) were computed for the CoP time series, separately for the anterior-posterior (AP) and mediolateral (ML) directions. The nonparametric Friedman ANOVA with Dunn-Bonferroni post-hoc analysis was employed to investigate the influence of external perturbations on both linear and nonlinear parameters on postural control. Results: The post-hoc analysis showed for LyE_AP_quiet (1.02 ± 0.18) significantly higher values than for LyE_AP_right (0.92 ± 0.22) and significantly higher for LyE_AP_left. Lyapunov Exponent was the parameter that differentiated the most between samples. Conclusions: The greatest number of significant differences between samples were demonstrated by the Lyapunov Exponent. This nonlinear parameter should be used to evaluate various perturbations during upright position in healthy subjects.
Rocznik
Strony
3--11
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Faculty of Rehabilitation, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland.
  • Faculty of Rehabilitation, Józef Piłsudski University of Physical Education in Warsaw, Warsaw, Poland.
Bibliografia
  • [1] BAX A.M., JOHNSON K.J., WATSON A.M., ADKIN A.L., CARPENTER M.G., TOKUNO C.D., The effects of perturbation type and direction on threat-related changes in anticipatory postural control, Hum. Mov. Sci., 2020, 73, 102674, DOI: 10.1016/j.humov.2020.102674.
  • [2] BŁAŻKIEWICZ M., Nonlinear measures in posturography compared to linear measures based on yoga poses performance, Acta Bioeng. Biomech., 2020, 22 (4), 15–21.
  • [3] BLENKINSOP G.M., PAIN M.T.G., HILEY M.J., Balance control strategies during perturbed and unperturbed balance in standing and handstand, R. Soc. Open Sci., 2017, 4 (7), 161018, DOI: 10.1098/rsos.161018.
  • [4] CHERIF A., LORAM I., ZENZERI J., Force accuracy rather than high stiffness is associated with faster learning and reduced falls in human balance, Sci. Rep., 2020, 10 (1), 4953, DOI: 10.1038/ s41598-020-61896-1.
  • [5] DE AZEVEDO A.K., CLAUDINO R., CONCEICAO J.S., SWAROWSKY A., DOS SANTOS M.J., Anticipatory and Compensatory Postural Adjustments in Response to External Lateral Shoulder Perturbations in Subjects with Parkinson’s Disease, PLoS One, 2016, 11 (5), e0155012, DOI: 10.1371/journal.pone.0155012.
  • [6] DOHERTY C., BLEAKLEY C., HERTEL J., CAULFIELD B., RYAN J., DELAHUNT E., Postural Control Strategies During Single Limb Stance Following Acute Lateral Ankle Sprain, Clin. Biomech., 2014, 29, 643–649. The impact of external perturbations on postural control 11
  • [7] DONKER S.F., ROERDINK M., GREVEN A.J., BEEK P.J., Regularity of Center-of-Pressure Trajectories Depends on the Amount of Attention Invested in Postural Control, Exp. Brain Res., 2007, 181, 1–11.
  • [8] DOYLE T.L., DUGAN E.L., HUMPHRIES B., NEWTON R.U., Discriminating between elderly and young using a fractal dimension analysis of center of pressure, International Journal of Medical Sciences, 2004, 1 (1), 11–20, DOI: 10.7150/ijms.1.11.
  • [9] GHOFRANI M., OLYAEI G., TALEBIAN S., BAGHERI H., MALMIR K., Test-retest reliability of linear and nonlinear measures of postural stability during visual deprivation in healthy subjects, J. Phys. Ther. Sci., 2017, 29 (10), 1766–1771, DOI: 10.1589/jpts.29.1766.
  • [10] GOLDBERGER A.L., AMARAL L.A., GLASS L., HAUSDORFF J.M., IVANOV P.C., MARK R.G., STANLEY H.E., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals, Circulation, 2000, 101 (23), E215–220, DOI: 10.1161/01.cir.101.23.e215.
  • [11] HIGUCHI T., Approach to an irregular time series on the basis of the fractal theory, Physica D: Nonlinear Phenomena, 1988, 31 (2), 277–283.
  • [12] HOF A.L., CURTZE C., A stricter condition for standing balance after unexpected perturbations, J. Biomech., 2016, 49 (4), 580–585, DOI: 10.1016/j.jbiomech.2016.01.021.
  • [13] HORAK F.B., HENRY S.M., SHUMWAY-COOK A., Postural perturbations: new insights for treatment of balance disorders, Phys. Ther., 1997, 77 (5), 517–533, DOI: 10.1093/ptj/77.5.517.
  • [14] HULZINGA F., DE ROND V., VANDENDOORENT B., GILAT M., GINIS P., D’CRUZ N., NIEUWBOER A., Repeated Gait Perturbation Training in Parkinson’s Disease and Healthy Older Adults: A Systematic Review and Meta-Analysis, Front Hum. Neurosci., 2021, 15, 732648, DOI: 10.3389/fnhum.2021.732648.
  • [15] JEON W., GRIFFIN L., HSIAO H.Y., Effects of initial foot position on postural responses to lateral standing surface perturbations in younger and older adults, Gait Posture, 2021, 90, 449–456, DOI: 10.1016/j.gaitpost.2021.09.193.
  • [16] JOHNSON K.J., ZABACK M., TOKUNO C.D., CARPENTER M.G., ADKIN A.L., Exploring the relationship between threat-related changes in anxiety, attention focus, and postural control, Psychol. Res., 2019, 83 (3), 445–458, DOI: 10.1007/s00426-017- 0940-0.
  • [17] KĘDZIOREK J., BŁAŻKIEWICZ M., Effect of voluntary muscle contraction on postural stability in healthy adults, Advances in Rehabilitation, 2021, 35 (4), 33–37, https://doi.org/10.5114/ areh.2021.108380
  • [18] KĘDZIOREK J., BŁAŻKIEWICZ M., Nonlinear Measures to Evaluate Upright Postural Stability: A Systematic Review, Entropy (Basel), 2020, 22 (12), DOI: 10.3390/e22121357.
  • [19] KHAYAT O., NOWSHIRAVAN-RAHATABAD F., Complex feature analysis of center of pressure signal for age-related subject classification, Ann. Mi. Health Sci. Res., 2014, 12 (1), 1–6.
  • [20] KOUSHYAR H., BIERYLA K.A., NUSSBAUM M.A., MADIGAN M.L., Age-related strength loss affects non-stepping balance recovery, PLoS One, 2019, 14 (1), e0210049, DOI: 10.1371/ journal.pone.0210049.
  • [21] LATASH M.L., The bliss (not the problem) of motor abundance (not redundancy), Exp. Brain Res., 2012, 217 (1), 1–5, DOI: 10.1007/s00221-012-3000-4.
  • [22] LEE Y.J., HOOZEMANS M.J., VAN DIEEN J.H., Handle height and expectation of cart movement affect the control of trunk motion at movement onset in cart pushing, Ergonomics, 2011, 54 (10), 971–982, DOI: 10.1080/00140139.2011.604432.
  • [23] LIU J., ZHANG X., LOCKHART T.E., Fall risk assessments based on postural and dynamic stability using inertial measurement unit, Saf. Health Work, 2012, 3 (3), 192–198, DOI: 10.5491/SHAW.2012.3.3.192.
  • [24] MILTON J.G., INSPERGER T., COOK W., HARRIS D.M., STEPAN G., Microchaos in human postural balance: Sensory dead zones and sampled time-delayed feedback, Phys. Rev. E, 2018, 98 (2–1), 022223, DOI: 10.1103/PhysRevE.98.022223.
  • [25] MOHAPATRA S., KRISHNAN V., ARUIN A.S., Postural control in response to an external perturbation: effect of altered proprioceptive information, Exp. Brain Res., 2012, 217 (2), 197–208, DOI: 10.1007/s00221-011-2986-3.
  • [26] PETRO B., PAPACHATZOPOULOU A., KISS R.M., Devices and tasks involved in the objective assessment of standing dynamic balancing – A systematic literature review, PLoS One, 2017, 12 (9), e0185188, DOI: 10.1371/journal.pone.0185188.
  • [27] PROMSI A., LONGO A., HAID T., DOIX A.M., FEDEROLF P., Leg Dominance as a Risk Factor for Lower-Limb Injuries in Downhill Skiers-A Pilot Study into Possible Mechanisms, Int. J. Environ. Res. Public Health, 2019, 16 (18), DOI: 10.3390/ ijerph16183399.
  • [28] RHEA C.K., DIEKFUSS J.A., FAIRBROTHER J.T., RAISBECK L.D., Postural Control Entropy Is Increased When Adopting an External Focus of Attention, Motor Control, 2019, 23 (2), 230–242, DOI: 10.1123/mc.2017-0089.
  • [29] RICHMAN J.S., MOORMAN J.R., Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Heart Circ Physiol., 2000, 278 (6), H2039–2049, DOI: 10.1152/ajpheart.2000.278.6.H2039.
  • [30] SANTOS M.J., ARUIN A.S., Role of lateral muscles and body orientation in feedforward postural control, Exp. Brain Res., 2008, 184 (4), 547–559, DOI: 10.1007/s00221-007-1123-9.
  • [31] SANTOS M.J., ARUIN A.S., Effects of lateral perturbations and changing stance conditions on anticipatory postural adjustment, J. Electromyogr. Kinesiol., 2009, 19 (3), 532–541, DOI: 10.1016/j.jelekin.2007.12.002.
  • [32] SEVER J., BABIC J., KOZINC Z., SARABON N., Postural Responses to Sudden Horizontal Perturbations in Tai Chi Practitioners, Int. J. Environ. Res. Public Health, 2021, 18 (5), DOI: 10.3390/ijerph18052692.
  • [33] SHERRINGTON C., MICHALEFF Z.A., FAIRHALL N., PAUL S.S., TIEDEMANN A., WHITNEY J., LORD S.R., Exercise to prevent falls in older adults: an updated systematic review and metaanalysis, Br. J. Sports Med., 2017, 51 (24), 1750–1758, DOI: 10.1136/bjsports-2016-096547.
  • [34] SNOUSSI H., HEWSON D., DUCHENE J., Nonlinear chaotic component extraction for postural stability analysis, Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2009, 31–34, DOI: 10.1109/ IEMBS.2009.5335020.
  • [35] SUZUKI Y., NAKAMURA A., MILOSEVIC M., NOMURA K., TANAHASHI T., ENDO T., NOMURA T., Postural instability via a loss of intermittent control in elderly and patients with Parkinson’s disease: A model-based and data-driven approach, Chaos, 2020, 30 (11), 113140, DOI: 10.1063/ 5.0022319.
  • [36] WOLF A., SWIFT J.B., SWINNEY H.L., VASTANO J.A., Determining Lyapunov exponents from a time series, Physica, 1985, 16D, 285–317.
  • [37] XIE L., WANG J., Anticipatory and compensatory postural adjustments in response to loading perturbation of unknown magnitude, Exp. Brain Res., 2019, 237 (1), 173–180, DOI: 10.1007/ s00221-018-5397-x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baf22683-d0b9-4e3d-a152-7e4b896ded9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.