PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of compression strength of bamboo reinforced low-density polyethylene waste (LDPEw) composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the compression strength of bamboo reinforced low-density polyethylene waste (water sachet waste) composites was predicted. The composites were produced using the compression moulding technique with the following formulations: LDPEw, 5, 10, 15, and 20 wt.% filler. The hardness and compression strength of the examined composites were found to increase when the amount of filler was raised, with the formulation containing 20 wt.% filler having the highest hardness and compression strength values of 59.37 HV and 12.72 MPa, respectively. The control (LDPEw) gave the lowest values of hardness (41.57 HV) and compression strength (8.6 MPa). Multiple regression (MR) and artificial neural networks (ANN) were utilized to predict the experimental compression strength of the produced composites with the hardness and filler composition as independent variables. The mean squared error results indicated that when compared with the multiple regression forecasts, the artificial neural network predictions not only had smaller errors but were also closer to the experimental compression strength values. It is recommended that other methods of producing composites, such as the pulverization process with a 40% higher filler content than what was used in this work, should be studied to ascertain if they provide better composite materials.
Rocznik
Strony
142--149
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Department of Materials and Metallurgical Engineering, Federal University of Technology, Owerri, Imo State, Nigeria
autor
  • Department of Materials and Metallurgical Engineering, Federal University of Technology, Owerri, Imo State, Nigeria
  • Department of Materials and Metallurgical Engineering, Federal University of Technology, Owerri, Imo State, Nigeria
  • Department of Materials and Metallurgical Engineering, Federal University of Technology, Owerri, Imo State, Nigeria
  • Department of Chemical Engineering, Federal University of Technology, Owerri, Imo State, Nigeria
  • Department of Metallurgical Engineering Technology, Akanu Ibiam Federal Polytechnic, Unwana, Afikpo, Nigeria
  • Department of Metallurgical Engineering Technology, Akanu Ibiam Federal Polytechnic, Unwana, Afikpo, Nigeria
Bibliografia
  • [1] Athijayamani A., Thiruchitrambalam M., Pazhanivel V.M.B., Mechanical properties of natural fibers reinforced poliester hybrid composite, International Journal Plastic Technology 2010, 14, 104-116.
  • [2] Dweib M.A., Hu B., Donnell A.O., Shenton H.W., Wool R.P., All natural composite sandwich beams for structural applications, Composite Structures 2004, 63, 147-157.
  • [3] Burguenoa R., Quagliataa M.J., Mohanty A.K., Mehtac G., Drzald L.T., Misra M., Hybrid biofiber-based composites for structural cellular plates, Composites: Part A 2005, 36, 581-593.
  • [4] Sridhar M.K.C., Hammed T.B. Turning Waste to Wealth in Nigeria: An Overview. Available at https://www.researchgate.net/publication/324077154_Turning_Waste_to_Wealth_in_Nigeria_An_Overview, 2014 Accessed: April 12, 2021.
  • [5] Abdullah A.H., Russell D.S., Abdulwahab A.S., Particle reinforced polymers, J. Bas. Res (Sci) 2011, 37(3A), 36-42.
  • [6] Choo V.K., Fundamentals of Composite Materials, Known Academic Press, 1990 ISBN 0-929789-00-2.
  • [7] Groover M.P., Fundamentals of Modern Manufacturing: Materials, Processes and Systems, Wiley, Hoboken 2010.
  • [8] Patnaik A., Satapathy M., Dash R.R., A Comparative study on different ceramic fillers affecting mechanical properties of glass-polyester composites, Journal of Reinforced Plastics and Composites 2008, 28(11), 1305-1318.
  • [9] Mohan R.K., Mohana R.K., Ratana P.A.V., Fabrication and testing of natural fibre composites: Vakka, sisal, bamboo and banana, Journal of Materials and Design 2010, 31(1), 508-513.
  • [10] Murali K. Mohan Rao, K. Mohana Rao, Extraction and tensile properties of natural fibers: Vakka, date and bamboo, Composite Structures 2007, 77(3), 288-295, DOI: 10.1016/j.compstruct.2005.07.023.
  • [11] Suhaily S.S., Khalil H.P.S.A., Nadirah W.O.W., Jawaid M., Bamboo Based Biocomposites Material, Design and Applications 2013, 492.
  • [12] Krishnaprasad K., Veena N.R., Hanna J., Maria R.R., Mikael S., Kuruvilla J., Mechanical and thermal properties of bamboo microfibril reinforced polyhydroxybutyrate biocomposites, J. Polym. Environ. 2009, 17, 109-114. DOI: 10.1007/s10924-009-0127-x.
  • [13] Han G., Lei Y., Wu Q., Kojima Y., Suzuki S., Bamboo-fiber filled high density polyethylene composites: Effect of coupling treatment and nanoclay, J. Polym. Environ. 2008. DOI: 10.1007/s10924- 008-0094-7.
  • [14] Chung K.F., Yu W.K., Mechanical properties of structural bamboo for bamboo scaffoldings, Engineering Structures 2002, 24, 429-442.
  • [15] Liu D., Zhong T., Chang P.R., Li K., Wu Q., Starch composites reinforced by bamboo cellulosic crystals, Bioresource Technology 2010, 101, 2529-2536.
  • [16] Abd. Latif, M. Abd. Razak O., Availability distribution of bamboo and its industrial status in peninsular Malaysia, Proceedings 4th International Bamboo Workshop, Bamboo in Asia and the Pacific, Chiangmai, Thailand 1990, November 27-30, 60-67.
  • [17] Lee A.W.C., Xuesong B., Perry N.P., Selected physical and mechanical properties of giant timber bamboo grown in South Carolina, Forest Prod. J. 1994, 44(9), 40-46.
  • [18] Pattnaik D., Kumar S., Bhuyan S.K., Mishra S.C., Effect of carbonization temperatures on biochar formation of bamboo leaves, IOP Conf. Ser.: Mater. Sci. Eng. 2008, 338, 012054, DOI: 10.1088/1757-899X/338/1/012054.
  • [19] Kumar R., Gunjal J., Chauhan S., Effect of carbonization temperature on properties of natural fibre and charcoal filled hybrid polymer composite, Compsites Part B: Engineering 2021, 217, 108846, DOI: 10.10.1016/j.compositesb.2021.108846.
  • [20] Li S., Xu Y., Jin X., Yilmaz G., Li D., Turng L.S., Effect of carbonization temperature on mechanical properties and biocompatibility of biochar/ultra-high molecular weight polyethylene composite, Compsites Part B: Engineering 2020, 196, DOI: 10.1016/j.compositesb.2020.108120.
  • [21] Subyakto S., Budiman I., Pari G., Effects of temperaturę and time of carbonization on the properties of bamboo (Dendrocalanus asper) carbon, Wood Research Journal 2012, DOI: 10.51850/wrj.2012.3.2.68-73.
  • [22] Peretomode T.M., Eboibi B.E., Fakrogha J.J., Preparation and characterization of wood dust natural fiber re-enforced polymer composite, Journal of Applied Sciences and Environmental Management 2019, 23(6), 1103; DOI: 10.4314/jasem.v23i6.17.
  • [23] Atuanya C.U., Aigbodion V.S., Obiorah S.O., Evaluation of the mechanical properties of recycled low-density polyethylene/bean pod particulate bio-composites, Journal of the Chinese Advanced Materials Society 2015, 3(4), 345-358; DOI: 10.1080/22243682.2015.1081077.
  • [24] Porras A., Maranon A., Ashcroft I.A., Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials, Composites Part B: Engineering 2015, 74, 66-73, DOI: 10.1016/j.compositesb.2014.12.033.
  • [25] Falemara B.C., Ajayi B., Owoyemi J.M., Strength and sorption properties of bamboo (bambusa vulgaris) wood-plastic composites, Proligno 2015, 21-30. Retrieved from: http://www.proligno.ro/en/articles/2015/3/falemara.pdf
  • [26] Ilori O.O., Idowu I.A., Adeleke K.M., Comparing the effect of fillers on the mechanical properties of recycled low density polyethylene composites under non-weathered and weathered conditions, European Journal of Engineering and Technology Research 2018, 3, 5, 17-20, DOI: 10.24018/ejeng.2018.3.5.707.
  • [27] Kamal A.A.A., Noriman N.Z., Sam S.T., Al-Rashdi A.A., Johari I., Razlan Z.M., Shahriman A.B., Zunaidi I., Khairunizam W., The influences of different bamboo filler loading on tensile properties and impact strength of RHDPE/BF composites, IOP Conference series: Materials Science and Engineering 2019, 557, DOI: 10.1088/1757-899x/557/1/012069.
  • [28] Onuegbu G.C., Onyedika G.O., Ogwuegbu M.O.C., Mechanical and thermal behaviour of clay filled recycled low density polyethylene 2019, 13-21, DOI: 10.1007/978-3-030-10383-52.
  • [29] Mishra M., Agarwal A., Maity D., Neural- network-based approach to predict the deflection of plain, steel-reinforced, and bamboo-reinforced concrete beams from experimental data, SN Appl. Sci. 2019, 1, 584, DOI: 10.1007/s42452-019-0622-1.
  • [30] Wang C., Zuo Q., Lin T., Anuar N.I.S., Salleh K.M., Gan S., Yousfani S.H.S., Zuo H., Zakaria S., Predicting thermal conductivity and mechanical property of bamboo fibers/polypropylene nonwovens reinforced composites based on regression analysis, International Communications in Heat and Mass Transfer 2020, 118, DOI: 10.1016/j.icheatmasstransfer.2020.104895.
  • [31] Nwobi-Okoye C.C., Anyichie M.K., Atuanya C.U., RSM and ANN modeling for production of newbouldia laevies fibre and recycled high density polyethylene composite: multi objective optimization using genetic algorithm, Fibers Polym. 2020, 21, 898-909, DOI: 10.1007/s12221-020-9597-1.
  • [32] Ofuyatan O.M., Agbawhe O.B., Omole D.O., Igwegbe C.I., Ighalo J.O., RSM and ANN modelling of the mechanical properties of self-compacting concrete with silica fume and plastic waste as partial constituent replacement, Cleaner Materials 2022, 4, DOI: 10.1016/j.clema.2022.100065.
  • [33] SPSS. SPSS Statistics. Retrieved September 20, 2016 from https://.en.m.wikipedia.org/ wiki/SPSS.
  • [34] Lærd Statistics, Multiple Regression Analysis using SPSS Statistics, 2013, Retrieved September 20, 2016 from https://statistics.laerd.com/spss-tutorials/multiple-regression-using-spss- statistics.php.
  • [35] Stockburger D.W., Multivariate Statistics: Concepts, Models, and Applications: Multiple Regression with Many Predictors Variable, n.d., Retrieved January 02, 2017 from http://www.psychstat.missouristate.edu/multibook/mlt07.htm.
  • [36] Higgins J., Introduction to Multiple Regression, Excerpted from The Radical Statistician 2005, Retrieved from http://www.biddle.com/documents/bcg_co mp_chapter4.pdf.
  • [37] Artificial Neural Network. Basic Concepts, n.d., Retrieved January 02, 2017, from http://www.ele.ita.cta.br/~cairo/My_Publicati ons/chap24.pdf.
  • [38] Fausett L., Fundamentals of Neural Networks, n.d., Retrieved November 16, 2016 from www.csbdu.in/csbduold/pdf/fundamentals.
  • [39] Ndukwe A.I., Anyakwo C.N., Modelling of corrosion inhibition of mild steel in hydrochloric acid by crushed leaves of sida acuta (malvaceae), THEIJES 2017, 6(1), 22-33, DOI: http://www.theijes.com/papers/vol6-issue1/Version-3/D0601032233.pdf.
  • [40] Ndukwe A.I., Anyakwo C.N., Predictive model for corrosion inhibition of mild steel in HCl by crushed leaves of clerodendrum splendens, IRJET 2017, 4(2), 679-688, DOI: https://irjet.net/archives/V4/i2/IRJET-V4I2129.pdf.
  • [41] Ndukwe A.I., Anyakwo C.N., Modelling of corrosion inhibition of mild steel in sulphuric acid by thoroughly crushed leaves of voacanga Africana (apocynaceae), AJER 2017, 6(1), 344-356, DOI: http://www.ajer.org/papers/v6 (01)/ZX060344356.pdf.
  • [42] Ndukwe A.I., Anyakwo C.N., Corrosion inhibition model for mild steel in sulphuric acid by crushed leaves of clerodendrum splendens (verbenaceae), IJSEAS 2017, 3(3), 39-49, DOI: http://ijseas.com/volume3/v3i3/ijseas20170305.pdf.
  • [43] Anyakwo C.N., Ndukwe A.I., Mathematical model for corrosion inhibition of mild steel in hydrochloric acid by crushed leaves of tridaxprocumbens (asteraceae), International Journal of Science and Engineering Investigations 2017, 6(65), 81-89, DOI: http://www.ijsei.com/papers/ijsei-66517-13.pdf.
  • [44] Anyakwo C.N., Ndukwe A.I., Prognostic model for corrosion-inhibition of mild steel in hydrochloric acid by crushed leaves of voacanga Africana, International Journal of Computational and Theoretical Chemistry 2017, 2(3), 31-42, DOI: 10.11648/j.ijec.20170203.11.
  • [45] Ndukwe A.I., Anyakwo C.N., Predictive corrosion-inhibition model for mild steel in sulphuric acid (H2SO4) by leaf-pastes of sida acuta plant, Journal of Civil, Construction and Environmental Engineering 2017, 2(5), 123-133, DOI: 10.11648/j.jccee.20170205.11.
  • [46] Ndukwe A.I., Anyakwo C.N., Hindering the corrosion on mild steel in hydrochloric acid medium by the leaf-paste of landolphia dulcis plant, International Journal of Scientific and Cultural Innovations and Sustainable Learning 2019, 10(1), 10-35.
  • [47] Mean Squared Error and Residual Sum of Squares. Cross-Validation. 2013; Retrieved September 20, 2016, from http://stats.stackexchange.com/question questions/73540/mean-squared-error-and- residual-sum-of-squares.
  • [48] Zakikhani P., Zahari R., Sultan M.T.H., Majid D.L., Thermal degradation of four bamboo species, Bio-Resources 2015, 11(1), DOI: 10.15376/biores.11.1.414-425.
  • [49] Md Shah A.U., Sultan M.T.H., Cardona F., Jawaid M., AbuTalib A.R., Yidris N., Thermal analysis of bamboo fibre and its composites, BioResources 2017, 12(2), DOI: 10.15376/biores.12.2.2394-2406.
  • [50] Oleiwi J.K., Salih S.I., Fadhil H.S., Study compression and impact properties of PMMA reinforced by natural fibers used in denture, Engineering and Technology Journal 2018, 36, Part A, 652-655, DOI: 10.30684/etj.36.6A.
  • [51] Bala M.B., Production and characterization of recycled LDPE/Periwinkle (turritela communis) shell particulate composite 2016. Available at http://kubanni.abu.edu.ng/ jspui/bitstream/123456789/7776/1./production%20and%20characterization%20of%20recycled%20ldpe%20per iwinkle.pdf; Accessed August 21, 2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baeba140-67b8-4385-a19d-cf2201aabf0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.