PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anisotropy of structural and mechanical properties in CuCrZr alloy following hydrostatic extrusion process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The methods of severe plastic deformation (SPD) of metals and metal alloys are very attractive due to the possibility of refinement of the grains to nanometric sizes, which facilitates obtaining high mechanical properties. This study investigated the influence of SPD in the process of hydrostatic extrusion (HE) on the anisotropy of the mechanical properties of the CuCrZr copper alloy. The method of HE leads to the formation of a characteristic microstructure in deformed materials, which can determine their potential applications. On the longitudinal sections of the extruded bars, a strong morphological texture is observed, manifested by elongated grains in the direction of extrusion. In the transverse direction, these grains are visible as equiaxed. The anisotropy of properties was mainly determined based on the analysis of the static mini-sample static tensile test and the dynamic impact test. The obtained results were correlated with microstructural observations. In the study, three different degrees of deformation were applied at the level necessary to refine the grain size to the ultrafine-grained level. Regardless of the applied degree of deformation, the effect of the formation of a strong morphological texture was demonstrated, as a result of which there is a clear difference between the mechanical properties depending on the test direction, both by the static and dynamic method. The obtained results allow for the identification of the characteristic structure formed during the HE process and the more effective use of the CuCrZr copper alloy in applications.
Rocznik
Strony
art. no. e141725
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Institute of High Pressure Physics of the Polish Academy of Sciences, Warszawa, Poland
  • Institute of High Pressure Physics of the Polish Academy of Sciences, Warszawa, Poland
autor
  • Institute of High Pressure Physics of the Polish Academy of Sciences, Warszawa, Poland
  • Institute of High Pressure Physics of the Polish Academy of Sciences, Warszawa, Poland
Bibliografia
  • [1] R.Z. Valiev, A.P. Zhilyaev, and T.G. Langdon, Bulk Nanostructured Materials. Fundamental and Applications, TMS-Wiley, Hoboken, New Jersey, 2014, doi: 10.1002/9781118742679.
  • [2] M.Y. Murashkin, I. Sabirov, X. Sauvage, and R.Z. Valiev, “Nanostructured Al and Cu alloys with superior strength and electrical conductivity,” J. Mater. Sci. Lett., vol. 51, pp. 33–49, 2016, doi: 10.1007/s10853-015-9354-9.
  • [3] G. Purcek et al., “Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion,” Mater. Sci. Eng. A, vol. 517, pp. 97–104, 2009, doi: 10.1016/j.msea.2009.03.054.
  • [4] A. Kováčová et al., “Investigation of the Ultrafine-Grained Structure Formation Under Different Strain Rates,” Arch. Metall. Mater., vol. 62, pp. 851–856, 2017, doi: 10.1515/amm-2017-0125.
  • [5] T. Kvackaj, A. Kovacova, R. Kocisko, J. Dutkiewicz, L. Litynska-Dobrzynska, and J. Kansy, “Relation between microstructural features and mechanical properties in oxygen free high conductivity copper after equal-channel angular pressing,” Kov. Mater., vol. 52, pp. 337–344, 2014, doi: 10.4149/km_2014_6_337.
  • [6] R. Valiev, “Nanostructuring of metals by severe plastic deformation for advanced properties,” Nature Mat., vol. 3, pp. 511–516, 2004, doi: 10.1038/nmat1180.
  • [7] I.J Beyerlein and L.S. Tóth, “Texture evolution in equal-channel angular extrusion,” Prog. Mater. Sci., vol. 54, 2009, pp. 427–510, doi: 10.1016/j.pmatsci.2009.01.001.
  • [8] R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci, vol. 45, no.2, pp. 103–189, 2000, doi: 10.1016/S0079-6425(99)00007-9.
  • [9] A. Vorhauer and R. Pippan, “On the homogeneity of deformation by high pressure torsion,” Scr. Mater, vol. 51, no. 9, pp. 921–925, 2004, doi: 10.1016/j.scriptamat.2004.04.025.
  • [10] A.P. Zhilyaev and T.G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Prog. Mater. Sci, vol. 53, no. 6, pp. 893–979, 2008, doi: 10.1016/j.pmatsci.2008.03.002.
  • [11] B. Cherukuri, T.S. Nedkova, and R. Srinivasan, “A comparison of the properties of SPD processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forgings and accumulative roll bonding,” Mater Sci Eng. A, vol. 410–411, pp. 394–397, 2005.
  • [12] S. Lee., Y. Saito, T. Sakai, and H. Utsunomiya, “Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding,” Mater Sci Eng. A, vol. 325, pp. 228–235, 2002, doi: 10.1016/S0921-5093(01)01416-2.
  • [13] O. Prakash and S. Sharma, “A review on accumulative roll bonding of severe plastic deformation process,” Int. J. Adv. Res. Innov. Ideas Educ., vol. 4, no. 3, pp. 2416–2435, 2018.
  • [14] J. Richert and M. Richert, “A new method for unlimited deformation of metals and alloys,” Aluminium, vol. 62, no. 8, pp. 604–607, 1986.
  • [15] M. Kulczyk et al., “Microstructure and mechanical properties of nickel deformed by hydrostatic extrusion,” Sci Mater, vol. 22, no. 3, pp. 839–846, 2005.
  • [16] W. Pachla et al., “Nanostructuring of metals by hydrostatic extrusion,” Conf. ESAFORM 2006, 2006, pp. 535–538.
  • [17] M. Kulczyk, S. Przybysz, J. Skiba, and W. Pachla, “Severe plastic deformation induced in Al, Al-Si, Ag and Cu by hydrostatic extrusion,” Arch. Metall. Mater., vol. 59, no. 1, pp. 59–64, 2014, doi: 10.2478/amm-2014-0010.
  • [18] L. Sun, N.R. Tao, and K. Lu, “A high strength and high electrical conductivity bulk CuCrZr alloy with nanotwins,” Scr. Mater., vol. 99, pp. 73–76, 2015, doi: 10.1016/j.scriptamat.2014.11.032.
  • [19] Y.X. Tong, Y. Wang, Z. M. Qian, D.T. Zhang, L. Li, and Y.F. Zheng, “Achieving High Strength and High Electrical Conductivity in a CuCrZr Alloy Using Equal-Channel Angular Pressing,” Acta Metall. Sinica Engl., vol. 31, no. 10, pp. 1084–1088, 2018, doi: 10.1007/s40195-018-0766-9.
  • [20] H.T. Zhou, J.W. Zhong, X. Zhou, Z.K. Zhao, and Q.B. Li, “Microstructure and properties of Cu-1.0Cr-0.2Zr-0.03Fe alloy,” Mater. Sci. Eng. A, vol. 498, no. 2, pp. 225–230, 2008, doi: 10.1016/j.msea.2008.07.061.
  • [21] V.I. Zeldovich, N. Yu. Frolova, I.V. Khomskaya, A.E. Kheifets, E.V. Shorokhov, and P.A. Nasonov, “Structure and microhardness of chromium–zirconium bronze subjected to severe plastic deformation by dynamic channel-angular pressing and rolling,” Phys. Met. Metall., vol. 115, pp. 465–470, 2014, doi: 10.1134/S0031918X14050159.
  • [22] R.K. Islamgaliev, K.M. Nesterov, and R.Z. Valiev, “Structure, strength, and electric conductivity of a Cu–Cr copper-based alloy subjected to severe plastic deformation,” Phys. Metals Metallogr., vol. 116, pp. 209–218, 2015, doi: 10.1134/S0031918X14090063.
  • [23] V.I. Zeldovich et al., “Mechanical properties and the structure of chromium–zirconium bronze after dynamic channel-angular pressing and subsequent aging,” Phys. Metals Metallogr., vol. 117, pp. 74–82, 2016, doi: 10.1134/S0031918X16010129.
  • [24] I.S. Batra, G.K. Dey, U.D. Kulkarni, and S. Banerjee, “Precipitation in a Cu–Cr–Zr alloy,” Mater. Sci. Eng. A, vol. 356, pp. 32–36, 2003, doi: 10.1016/S0921-5093(02)00852-3.
  • [25] V.R. Barabash, G.M. Kalinin, S.A. Fabritsiev and S.J. Zinkle, “Specification of Cu-Cr-Zr alloy properties after various thermo-mechanical treatments and design allowable including neutron irradiation effects,” J. Nucl. Mater., vol. 417, pp. 904–907, 2012, doi: 10.1016/j.jnucmat.2010.12.158.
  • [26] P. Lorenzetto et al., “EU R&D on the ITER First Wall,” Fusion Eng. Des. A, vol. 81, pp. 355–360, 2006, doi: 10.1016/j.fusengdes.2005.07.040.
  • [27] S. Przybysz et al., “Anisotropy of mechanical and structural properties in AA 6060 aluminum alloy following hydrostatic extrusion process,” Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no.4, pp. 709–717, doi: 10.24425/bpasts.2019.130180.
  • [28] E.C. Moreno-Valle et al., “Anisotropy of uniaxial and biaxial deformation behaviour of pure Titanium after hydrostatic extrusion,” Mater. Sci. Eng. A, vol. 588, pp. 7–13, 2013, doi: 10.1016/j.msea.2013.08.044.
  • [29] H. Feng, H. Jiang, D. Yan, and L. Rong, “Effect of continuous extrusion on the microstructure and mechanical properties of a CuCrZr alloy,” Mater. Sci. Eng. A, vol. 582, pp. 219–224, 2013, doi: 10.1016/j.msea.2013.06.031.
  • [30] I. Alexander, S.S. Pavlov and M. Kiritani, “Effective temperature rise during propagation of shock wave and high-speed deformation in metals,” Mater. Sci. Eng. A, vol. 350, pp. 245–250, 2003, doi: 10.1016/S0921-5093(02)00711-6.
  • [31] F.K. Yan, G.Z. Liu, N.R. Tao, and K. Lu, “Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles,” Acta Mater., vol. 60, no. 3, pp. 1059–1071, 2012, doi: 10.1016/j.actamat.2011.11.009.
  • [32] W. Pachla, J. Skiba, M. Kulczyk, and M. Przybysz, “Highpressure equipment for cold severe plastic deformation working of materials,” Met. Form., vol. 26, no. 4, pp. 283–306, 2015.
  • [33] W. Pachla, M. Kulczyk, A. Mazur, and M. Sus-Ryszkowska, “UFG and nanocrystalline microstructures produced by hydrostatic extrusion of multifilament wires,” Int. J. Mater. Res., vol. 100, pp. 984–990, 2009, doi: 10.3139/146.110142.
  • [34] T. Wejrzanowski, W.L. Spychalski, K. Różniatowski, and K.J. Kurzydłowski, “Image based analysis of complex microstructures of engineering materials,” Int. J. Appl. Math. Comput. Sci., vol. 18, no. 1, pp. 33–39, 2008, doi: 10.2478/v10006-008-0003-1.
  • [35] M. Kulczyk et al., “Improved compromise between the electrical conductivity and hardness of the thermo-mechanically treated CuCrZr alloy,” Mater. Sci. Eng. A, vol. 724, pp. 45–52, 2018, doi: 10.1016/j.msea.2018.03.004.
  • [36] A. Vinogradov, Y. Suzuki, T. Ishida, K. Kitagawa, and V.I. Kopylov, “Effect of Chemical Composition on Structure and Properties of Ultrafine Grained Cu-Cr-Zr Alloys Produced by Equal-Channel Angular Pressing,” Mater. Trans., vol. 45, pp. 2187–2191, 2004, doi: 10.2320/matertrans.45.2187.
  • [37] A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, and V.I. Kopylov, “Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing,” Acta Mater., vol. 50, no. 7, pp. 1636–1651, 2002, doi: 10.1016/S1359-6454(01) 00437-2.
  • [38] Y.T. Zhu, T.C. Lowe, and T.G. Langdon, “Performance and applications of nanostructured materials produced by severe plastic deformation,” Scr. Mater., vol. 51, pp. 825–830, 2004, doi: 10.1016/j.scriptamat.2004.05.006.
  • [39] H. Li, Q. Q. Duan, and Z. F.Zhang, “Tearing toughness of ductile metals,” Acta Metall. Sin., vol. 29, no. 2, pp. 150–155, 2016, doi: 10.1007/s40195-016-0371-8.
  • [40] P. Das, R. Jayaganthan, and I.V. Singh, “Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy,” Mater. Des., vol. 32, no. 3, pp. 1298–1305, 2011, doi: 10.1016/j.matdes.2010.09.026.
  • [41] A. Sivaraman and U. Chakkingal, “Flow properties of commercial purity aluminum processed by equal channel angular pressing,” Mater. Sci. Eng. A., vol. 487, pp.264–270, 2008, doi: 10.1016/j.msea.2007.10.071.
  • [42] C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, “The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP,” Mater. Sci. Eng. A., vol. 398, pp. 66–76, 2005, doi: 10.1016/j.msea.2005.03.083.
  • [43] A. Vinogradov, “Fracture and fatigue resistance of ultrafine grain CuCrZr alloy produced ECAP,” Mater. Sci. Forum, vol. 503–504, pp. 811–816, doi: 10.4028/www.scientific.net/MSF.503-504.811.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baea4f93-b689-4451-b55f-98b56fc25cb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.