PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Safety-Assisted Driving Technology Based on Artificial Intelligence and Machine Learning for Moving Vehicles in Vietnam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
ADAS (Advanced Driver Assistance Systems) plays an important role in building a safe and modern traffic system. For these systems, precise detection performance and response speed are critical. However, the detection of mobile vehicles is facing many difficulties due to the density of vehicles, the complex background scene in the city, etc. In addition, the detection and identification requirements respond in real time is also a challenge for current systems. This paper proposes a model using deep learning algorithms and artificial intelligence to increase accuracy and improve response speed for intelligent driving assistance systems. Accordingly, this paper proposes the YOLO (You Only Look One) model together with a sample data set collected and classified separately suitable for Vietnam traffic and our training algorithm. The experimental results were then performed on an NVIDIA Jetson TX2 embedded computer. The experimental results show that, the proposed method has increased the speed by at least 1.5 times with the detection rate reaching 79\% for the static camera system; and speed up at least 1.5x with a detection rate of 89\% for the dynamic camera system at 1280x720px high resolution images.
Rocznik
Tom
Strony
279--284
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Electrical and Electronics Engineering, Hung Yen University of Technology and Education
  • Faculty of Electrical and Electronics Engineering, Hung Yen University of Technology and Education
Bibliografia
  • [1] A. F. Agarap, Deep Learning using Rectified Linear Units (ReLU), https://arxiv.org/abs/1803.08375, 2018.
  • [2] G. S. W. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, ISBN 978-0-8053-4780-7, 26 July 2020.
  • [3] M. Galvani, History and future of driver assistance,” IEEE Instrumentation Measurement Magazine, ISSN 1941-0123, 2019.
  • [4] Ultralytics, “YOLOv5 Documentation,” [Trực tuyến]. Available: https://docs.ultralytics.com/.
  • [5] S. D. R. G. A. F. Joseph Redmon, You Only Look Once: Unified, Real-Time Object Detection, https://arxiv.org/abs/1506.02640 [cs.CV], 8 Jun 2015.
  • [6] M. Schumann, A Book about Colab: (and related activities), ISBN 978-0-89439-085-2, 2015.
  • [7] GeeksforGeeks, “Python Virtual Environment | Introduction,” 2020. [Trực tuyến]. Available: https://www.geeksforgeeks.
  • [8] C. H. Thuc, “Precision, Recall và F1-score là gì?,” 23 02 2020. [Trực tuyến]. Available: https://caihuuthuc.wordpress.com/2020/02/23/precision-recall-va-f1-score-la-gi/.
  • [9] D. Thuan, Evolution of YOLO Algorithm and YOLOv5: The State-of-the-art Object Detection, Bachelor thesis (3.092Mt), Spring 2021.
  • [10] H.-S. Vu, J.-X. Guo, K.-H. Chen, S.-J. Hsieh và D.-S. Chen, A real-time moving objects detection and classification approach for static cameras, IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), 2016.
  • [11] V. T. D. T. D. N. Hong Son Vu, MỘT PHƯƠNG PHÁP PHÁT HIỆN ĐIỂM MÙ VỚI ĐỘ TIN CẬY CAO VÀ THỜI GIAN THỰC CHO CÁC HỆ THỐNG HỖ TRỢ LÁI XE THÔNG MINH, MOET B2020-SKH-02, October 2020.
  • [12] V. H. Son, A high dynamic range imaging algorithm: implementation and evaluation, Engineering and Technology - Research article, Aug 7, 2019.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bae93100-efb0-4712-91be-571c81b8b4f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.