PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations on soluble starch as the depressant of hematite during flotation separation of apatite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, soluble starch was studied as a depressant of hematite during flotation separation of apatite using sodium oleate as a collector. Surface charge measurement, soluble starch adsorptions, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to understand the interaction mechanisms between minerals (hematite and apatite) and soluble starch. The results indicated that chemical interaction between hematite and soluble starch was present, and supported the bonding of hydroxyl, while physical adsorption of soluble starch molecules with apatite occurred. Results of micro-flotation studies suggested that soluble starch was considered as a selective depressant for hematite. The maximum recovery difference between hematite and apatite of 77.5% was obtained with 40 mg/dm3 soluble starch. The flotation experiment results of natural iron ore showed that flotation indexes with 59.73% Fe, iron recovery of 81.5% and 75.68% of dephosphorization ratio were achieved at a soluble starch dosage of 60 mg/dm3. However, a higher dosage of soluble starch addition caused the difficulty for flotation separation of apatite from hematite. Our results provided theoretical basis for the flotation separation of apatite from iron oxide ores.
Słowa kluczowe
Rocznik
Strony
38--48
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, Yunnan, PR China
autor
  • Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093, Yunnan, PR China
Bibliografia
  • ARAUJO, A.C., VIANA, P.R.M., PERES, A.E.C., 2005. Reagents in iron ores flotation. Minerals Engineering, 18, 219-224.
  • CAEL, J.J., KOENIG, J.L., BLACKWELL, J., 1975. Infrared and Raman spectroscopy of carbohydrates. Part VI: normal coordinate analysis of V-amylose. Biopolymers, 14, 1885-1903.
  • CAO, Q., CHENG, J., WEN, S., LI, C., BAI, S., LIU, D., 2015. A mixed collector system for phosphate flotation. Minerals Engineering, 78, 114–121
  • FILIPPOV, L.O., FILIPPOVA, I.V., SEVEROV, V.V., 2010. The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates. Minerals Engineering, 23, 91-98.
  • FILIPPOV, L.O., SEVEROV, V.V., FILIPPOVA, I.V., 2013. Mechanism of starch adsorption on Fe-Mg-Al-bearing amphiboles. Int J Miner Process, 123, 120-128.
  • FISHER-WHITE, M.J., LOVEL, R.R., SPARROW, G.J., 2012. Heat and Acid Leach Treatments to Lower Phosphorus Levels in Goethitic Iron Ores. Isij Int, 52, 1794-1800.
  • GAO, Y.S., GAO, Z.Y., SUN, W., YIN, Z.G., WANG, J.J., HU Y.H.,2018. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J Colloid Interface Sci, 512, 39-46.
  • GAO, Z.Y., LI, C.W., SUN, W., HU, Y.H., 2017. Anisotropic surface properties of calcite: A consideration of surface broken bonds. Colloid Surface A, 520, 53-61.
  • GAO, Y.S., GAO, Z.Y., SUN, W., HU, Y.H., 2016 a. Selective flotation of scheelite from calcite: A novel reagent scheme, International Journal of Mineral Processing, 154,10-15.
  • GAO, Z.Y., GAO, Y.S., ZHU, Y.Y., HU, Y.H., SUN, W., 2016 b. Selective flotation of calcite from fluorite: a novel reagent schedule. Minerals, 6 (4), 114.
  • HEYN, A.N.J., 1974. The infrared absorption spectrum of dextran and its bound water. Biopolymers, 13, 475-506.
  • HU, H.P., WANG, M., DING, Z.Y., JI, G.F., 2016. FT-IR, XPS and DFT Study of the Adsorption Mechanism of Sodium Salicylate onto Goethite or Hematite. Acta Phys-Chim Sin, 32, 2059-2068.
  • JAIN, V., RAI, B., WAGHMARE, U.V., PRADIP, 2012. Molecular modeling based selection and design of selective reagents for beneficiation of alumina rich iron ore slimes. Proceedings XXVI International Mineral Processing Congress, New Delhi, India, pp. 2258-2269.
  • JONG, K., HAN, Y., RYOM, S., 2017. Flotation mechanism of oleic acid amide on apatite. Colloid Surface A, 523, 127-131.
  • KAR, B., SAHOO, H., RATH, S.S., DAS, B., 2013. Investigations on different starches as depressants for iron ore flotation. Miner Eng, 49, 1-6.
  • KHOSLA N.K., BHAGAT, R.P., GANDHI, K.S., BISWAS, A.K., 1984. Calorimetric and other interaction studies on mineral–starch adsorption systems. Colloids Surf, 8, 321-335.
  • LI, C., GAO Z., 2017. Effect of grinding media on the surface property and flotation behavior of scheelite particles. Powder Technol, 322, 386-392.
  • LIU-YIN, X., ZHONG, H., LIU, G.Y., WANG, S., 2009. Utilization of soluble starch as a depressant for the reverse flotation of diaspore from kaolinite. Miner Eng, 22, 560-565.
  • LIU, S.Q., ZHANG, M., WANG, W.P., LI, X.J., 2013. A Combined Beneficiation Process to Recover Iron Minerals from a Finely Disseminated Low-Grade Iron Ore. Advances in Chemical, Material and Metallurgical Engineering, Pts 1-5 634-638, 3273-3276.
  • LIU, X., RUAN, Y.Y., LI, C.X., CHENG, R.J., 2017. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system. International Journal of Mineral Processing, 167, 95–102.
  • MA, X., MARQUES, M., GONTIJO, C., 2011. Comparative studies of reverse cationic/anionic flotation of Vale iron ore. International Journal of Mineral Processing, 100, 179-183.
  • MOULDER, J.F., STICKLE, W.F., SOBOL, P.E., BOMBEN, K.D., CHASTAIN, J., 1992. Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie, Perkin-Elmer Corporation, p. 439.
  • NASIBULIN, A.G., RACKAUSKAS, S., JIANG, H., TIAN, Y., MUDIMELA, P.R., SHANDAKOV, S.D., NASIBULINA, L.I., SAINIO, J., KAUPPINEN, E.I., 2009. Simple and Rapid Synthesis of alpha-Fe2O3 Nanowires Under Ambient Conditions. Nano Res, 2, 373-379.
  • NUNES, A.P.L., PINTO, C.L.L., VALADAO, G.E.S., VIANA, P.R.D., 2012. Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation. Miner Eng, 39, 206-212.
  • OMRAN, M., FABRITIUS, T., ELMANDY, A.M., ABDEL-KHALEK, N.A., EL-AREF, M., ELMANAWI, A., 2015. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore. Appl Surf Sci, 345, 127-140.
  • PAVLOVIC, S., BRANDAO, P.R.G., 2003. Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz. Miner Eng, 16, 1117-1122.
  • PAWLAK, A., MUCHA, A., 2003. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta, 396, 153-166.
  • QUAST, K., 2017. Literature review on the use of natural products in the flotation of iron oxide ores. Miner Eng, 108, 12-24.
  • RAVISHANKAR, S.A., PRADIP, K., N.K.,, 1995. Selective flocculation of iron oxide from its synthetic mixtures with clays: a comparison of plyacrylic acid and its starch polymers. Int J Miner Process, 43, 235-247.
  • ROOSENDAAL, S.J., VAN ASSELE, B., ELSENAAR, J.W., VREDENBERG, A.M., HABRAKEN, F.H.P.M., 1999. The oxidation state of Fe(100) after initial oxidation in O2. Surf Sci Rep, 44, 329-337.
  • SOMSOOK, E., HINSIN, D., BUAKHRONG, P., TEANCHAI, R., MOPHAN, N., POHMAKOTR, M., SHIOWATANA, J., 2005. Interactions between iron(III) and sucrose, dextran, or starch in complexes. Carbohyd Polym, 61, 281-287.
  • SUN, Y.S., HAN, Y.X., Gao, P., WEI, X.C., LI, G.F., 2015. Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms. Int J Miner Process, 143, 87-97.
  • TANG, M., WEN, S.M., 2015. Flocculation/Dispersion of Hematite with Caustic Digested Starch. Physicochemical Problems of Mineral Processing, 51, 477-489.
  • TIAN, M., GAO, Z., HAN, H., SUN, W., HU, Y., 2017. Improved flotation separation of cassiterite from calcite using a mixture of lead (II) ion / benzohydroxamic acid as collector and carboxymethyl cellulose as depressant. Miner Eng, 113, 68-70.
  • TURRER, H.D.G., PERES, A.E.C., 2010. Investigation on alternative depressants for iron ore flotation. Miner Eng, 23, 1066-1069.
  • VENYAMINOV, S.Y., PRENDERGAST, F.G., 1997. Water (H2O and D2O) molar absorptivity in the 1000–4000 cm-1 range and quantitative infrared spectroscopy of aqueous solutions. Analytical Biochemistry, 248, 234-245.
  • WANG J., GAO Z., GAO Y., HU Y., SUN W, 2017. Flotation separation of scheelite from calcite using mixed cationic/anionic collectors. Miner Eng, 98, 261-263.
  • WAGNER, C.D., GALE, L.H., RAYMOND, R.H., 1979. Two-dimensional chemical state plots: a standardized data set for use in identifying chemical states by x-ray photoelectron spectroscopy. Anal. Chem., 51, 466-482.
  • YAN, H.J., ZHANG, B.S., 2011. In vitro cytotoxicity of monodispersed hematite nanoparticles on Hek 293 cells. Mater Lett, 65, 815-817.
  • YONG, W.H., ZHANG, Y.S., GONG, W.Q., 2010. Process Mineralogy and Mineral Processing Technology of Colloid Sedimentary Iron Ore. Regulatory Regional Economic Challenge for Mining, Investment, Environment and Work Safety, 49-55.
  • YOU, L.J., LU, F.F., LI, D., QIAO, Z.M., YIN, Y.P., 2009. Preparation and flocculation properties of cationic starch/chitosan crosslinking-copolymer. J Hazard Mater, 172, 38-45.
  • YUAN, L., WANG, Y.Q., CAI, R.S., JIANG, Q.K., WANG, J.B., LI, B.Q., SHARMA, A., ZHOU, G.W., 2012. The origin of hematite nanowire growth during the thermal oxidation of iron. Mater Sci Eng B-Adv, 177, 327-336.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bae7bce3-791a-474e-a9fc-8c129f67da27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.