Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The manuscript presents a new manufacturing technology for the production of hollow railway axle forgings. The manufacturing technology analyzed is based on three-roll skew rolling (TRSR) using a computer numerically controlled (CNC) rolling mill. The study focused on comparing the rolling capability of hollow products without and with a mandrel calibrating the hole of the forging. The influence of tube billet size on the rolling process was also analyzed. FE analysis and experimental studies were carried out. An analysis of the accuracy of the internal hole of the forging depending on the adopted parameters of the rolling process was carried out. Based on numerical simulations, the state of strain and the flow pattern of the material and temperature distribution during rolling were determined. The force parameters of the rolling process of hollow forgings were also analyzed. Based on the research, a two-stage rolling technology for rolling hollow railway axle forgings was proposed. The results obtained indicate the suitability of using a calibrating mandrel to improve hole accuracy in hollow forgings rolled from a tubular billet. The gap c between the bore diameter of the forging and the diameter of the mandrel was measured. Increasing the tubular billet dimensions from Ø42.4 × 10 mm to Ø48.3 × 12.5 mm reduced the gap c by 49.8%. Rolling the billet Ø51 × 14.2 mm in two passes compared to rolling in one pass reduced the gap c by 45.5%.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. e145, 2024
Opis fizyczny
Bibliogr. 35 poz., fot., rys., wykr.
Twórcy
autor
- Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1. Pomykała A, Engelhardt J. Concepts of construction of high-speedrail in Poland in context to the European high-speed rail networks. Socio-Econ Plan Sci. 2023;85: 101421. https://doi. org/10.1016/j.seps.2022.101421.
- 2. Mindur L, Mindur M. The development of high-speed rail in the Federal Republic of Germany between 2002–2020. Sci J Sil UnivTechnol Ser Transp. 2022;117:151–74.
- 3. Fu ZH, Yang BJ, Shan ML, Li T, Zhu ZY, Ma CP, Zhang X, GouWZR, Hydrogen GW. embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones. Corros Sci. 2020;164:108337.
- 4. Giętka T, Ciechacki K. Modeling of railway wheels made of aus-tempered ductile iron. Arch Metall Mater. 2016;61(4):1833–8.https://doi.org/10.1515/amm-2016-0296.
- 5. Kowalski S. Selected problems in the exploitation of wheel setsin rail vehicles. J Mach Constr Maint. 2017;105(2):109–16.
- 6. Smith RA. Fatigue of railway axles: A classic problem revisited. In: Fuentes M, Elices M, Martín-Meizoso A, Martínez-Esnaola JM, editors. Fracture Mechanics: Applications and Challenges.San Sebastián: Elsevier; 2000. p. 173–81.
- 7. Shi J, Zhao B, He T, Tu L, Lu X, Xu H. Tribology and dynamic characteristics of textured journal-thrust coupled bearing considering thermal and pressure coupled effects. Tribol Int. 2023;180:108292. https://doi.org/10.1016/j.triboint.2023.108292.
- 8. Ognjanovic M, Simonovic A, Ristivojevic M, Lazovic T. Researchof rail traction shafts and axles fractures towards impact of service conditions and fatigue damage accumulation. Eng Fail Anal. 2010;17:1560–71. https://doi.org/10.1016/j.engfailanal.2010.06.007.
- 9. Luo Y, Wang H, Li C, Ren X, Wu S. Fatigue strength assessment of high-speed railway axle EA4T steel with foreign object damage. Eng Fail Anal. 2022;133: 105961. https://doi.org/10.1016/j.engfailanal.2021.105961.
- 10. Lin LF, Wang BY, Liu JP, Zheng ZH, Zhu CB. An application exploration of flexible skew rolling a rail car axle. IOP Conf Ser Mater Sci Eng. 2022;1270: 012082. https://doi.org/10.1088/1757-899X/1270/1/012082.
- 11. Mistry PJ, Johnson MS. Lightweighting of railway axles for the reduction of unsprung mass and track access charges. Proc Inst Mech Eng F J Rail Rapid Transit. 2020;234(9):958–68. https://doi.org/10.1177/0954409719877774.
- 12. Son S, Jung H, Choi S. Study on design of railway hollow axle.Trans Korean Soc Automot Eng. 2014;22(4):46–54. https://doi.org/10.7467/KSAE.2014.22.4.046.
- 13. Huang H, Yao Y, Liang C, Ye Y. Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam. Soil Dyn Earthq Eng. 2022;163: 107499.https://doi.org/10.1016/j.soildyn.2022.107499.
- 14. Xu Y, Zhang Y, Zhuang X, Cao Z, Lu Y, Zhao Z. Numerical mod-eling and anvil design of high-speed forging process for railway axles. Int J Mater Form. 2021;14:813–32. https://doi.org/10.1007/s12289-020-01590-9.
- 15. Gronostajski Z, Pater Z, Madej L, Gontarz A, Lisiecki L, Łukaszek-Sołek A, et al. Recent development trends in metalforming. Arch Civ Mech Eng. 2019;19(3):898–941. https://doi.org/10.1016/j.acme.2019.04.005.
- 16. Campi F, Mandolini M, Favi C, Checcacci E, Germani M. Ananalytical cost estimation model for the design of axisymmetric components with open-die forging technology. Int J Adv Manuf Technol. 2020;110:1869–92. https:// doi. org/ 10. 1007/s00170-020-05948-w.
- 17. Biermann D, Bleicher F, Heisel U, Klocke F, Möhring HC, ShihA. Deep hole drilling. CIRP Ann Manuf Technol. 2018;67:673–94. https://doi.org/10.1016/j.cirp.2018.05.007.
- 18. Biermann D, Kirschner M, Eberhardt D. A novel method for chip formation analyses in deep hole drilling with small diameters. Prod Eng Res Devel. 2014;8:491–7. https:// doi. org/ 10.1007/s11740-014-0566-7.
- 19. Mistry PJ, Johnson MS, McRobie CA, Jones IA. Design of alight weight multifunctional composite railway axle utilising coaxial skins. J Compos Sci. 2021;5(3):77. https://doi.org/10.3390/jcs5030077.
- 20. Johnson MS, Evans R, Mistry P, Li S, Bruni S, Bernasconi A, Cervello S. Structural analysis for the design of a lightweight composite railway axle. Compos Struct. 2022;290: 115544.https://doi.org/10.1016/j.compstruct.2022.115544.
- 21. Mistry PJ, Johnson MS, Li S, Bruni S, Bernasconi A. Parametric sizing study for the design of a lightweight composite railway axle. Compos Struct. 2021;267: 113851. https:// doi. org/ 10.1016/j.compstruct.2021.113851.
- 22. Carra G, Formaggioni D, Johnson MS, Mistry PJ, Bernasconi A, Bruni S. Optimization of a filament wound hybrid metal composite railway axle design concept. Appl Sci Eng Prog.2022;15(2):5791.
- 23. Pater Z, Tomczak J, Bulzak T, Wójcik Ł. Conception of athree roll cross rolling process of hollow rail axles. ISIJ Int. 2021;61(3):895–901. https://doi.org/10.2355/isijinternational.ISIJINT-2020-530.
- 24. Nwe T, Pimsarn M. Railway axle and wheel assembly press-fitting force characteristics and holding torque capacity. Appl Sci. 2021;11(19):8862. https://doi.org/10.3390/app11198862.
- 25. Shen J, Wang B, Yang C, Zhou J, Cao X. Theoretical study and prediction of the inner hole reduction and critical mandrel diameter in cross wedge rolling of hollow shaft. J Mater Process Tech. 2021;294: 117140. https://doi.org/10.1016/j.jmatprotec.2021.117140.
- 26. Shu C, Zhang S, Bidare P, Essa K, Abdel-Wahab A, Shu X, Pater Z, Bartnicki J. Microstructure evolution of three-rollskew-rolling formed hollow axles with uniform wall thickness. Int J Adv Manuf Technol. 2022;121:4069–85. https://doi.org/10.1007/s00170-022-09583-5.
- 27. Pater Z. A comparative analysis of forming railway axles in 3-and 4-roll rolling mills. Materials. 2020; 13(14):3084. https://doi.org/10.3390/ma13143084.
- 28. Yu B, Chen Z, Wang P, Song X. A comparative study on the mechanical behavior of S355J2 steel repair-welded joints. JConstr Steel Res. 2023;205: 107878. https://doi.org/10.1016/j.jcsr.2023.107878.
- 29. Shu X, Zhang S, Shu C, Wang J, Ye C, Xia Y, Essa K, PaterZ. Research and prospect of flexible forming theory and technology of hollow shaft by three-roll skew rolling. J Adv Manuf Technol. 2022;123:689–707. https:// doi. org/ 10. 1007/s00170-022-10242-y.
- 30. Yang Y, Lin B, Zhang W. Experimental and numerical investigation of an arch-beam joint for an arch bridge. Archiv Civ Mech Eng. 2023;23:101. https://doi.org/10.1007/s43452-023-00645-3.
- 31. Wang J, Shu X, Ye C, Li Z, Li S, Xu H, Wang Y, Deng Y, Chen Q.Study on forming quality of three-roll skew rolling hollow axle. J Adv Manuf Technol. 2023;128:1089–100. https://doi.org/10.1007/s00170-023-11893-1.
- 32. Cao X, Wang B, Guo W, Ju Z. A new method of manufacturing hollow shafts via flexible skew rolling. J Phys Conf Ser. 2021;2101: 012010. https://doi.org/10.1088/1742-6596/2101/1/0120.
- 33. Zhu Q, Chen J, Gou G, Chen H, Li P. Ameliorated longitu-dinal critically refracted—Attenuation velocity method for welding residual stress measurement. J Mater Process Tech. 2017;246:267–75. https://doi.org/10.1016/j.jmatprotec.2017.03.022.
- 34. Pańcikiewicz K, Tuz L. Microstructure and mechanical properties of S355 structural steel multirun tee-joint made by robot motioned MAG method. Weld Tech Rev. 2013;85:34–40.
- 35. Pater Z, Tomczak J, Bulzak T, Walczuk-Gągała P. Numerical and experimental study on forming preforms in a CNC skew rollingmill. Arch Civ Mech Eng. 2022;22:54. https://doi.org/10.1007/s43452-022-00373-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bae567e3-071c-44db-9484-efb4c7f3b46f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.