PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of Thermoelectric Efficiency and Optical Properties of Hydrogen Absorption in SiC:Mn Nanotube

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of hydrogen absorption and manganese substitution on structural, electronic, optical, and thermoelectric properties of silicon-carbon nanotubes (SiCNT) are studied using the density functional theory and the GGA approximation. An examination of the PDOS curves and the electronic band structure showed that the Mn substitution leads to an increase in magnetic anisotropy and the occurrence of semi-metallic behavior and that the hydrogen absorption shifts the band gap toward the lower energies. A study of these nanostructures’ thermoelectric behavior reveals that the H absorption leads to a significant escalation in the figure of merit of the SiCNT to about 1.6 in the room temperature range. The effects of the H absorption on this nanotube’s optical properties, including the dielectric functions and its absorption spectra, are also investigated.
Twórcy
  • Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  • Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  • Nano Research Lab (NRL), Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
  • Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • [1] G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos, J. Samios, Nano Lett. 6(8), 1581 (2006).
  • [2] X. Shi, L. Chen, C. Uher, International Materials Reviews 61 (6), 379 (2016).
  • [3] L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
  • [4] C. Giulio, B. Andrea, F. Vincenzo, Phys. Rev. Materials 4, 075404 (2020).
  • [5] P.H. Jiang, et. al., Physical Chemistry Chemical Physics 17 (41), 27558 (2015).
  • [6] C.J. An, H. Kang, H. Song, Y. Jeong, S.Y. Cho, Journal of Materials Chemistry A 5 (30), 15631 (2017).
  • [7] C.J. An, Y.H. Kang, H. Song, Y. Jeong, S.Y. Cho, Journal of Materials Chemistry A 5 (30), 15631 (2017).
  • [8] S.J. Kim, H.E. Lee, H. Choi, Y. Kim, J.H. We, J.S. Shin, K.J. Lee, B.J. Cho, ACS Nano 10 (12), 10851 (2016).
  • [9] D. Kim, Y. Kim, K. Choi, J.C. Grunlan, C. Yu, ACS Nano 4 (1), 513 (2010).
  • [10] Q. Yao, L. Chen, W. Zhang, S. Liufu, X. Chen, Acs Nano 4 (4), 2445 (2010).
  • [11] X.Y. Han, J. Wang, H.F. Cheng, Bulletin of Materials Science 37 (1), 127 (2014).
  • [12] Y. Cui, K. Wang, B. Wang, Appl. Math. Mech.-Engl. Ed. 39, 1477 (2018).
  • [13] W. Wei, J.W. Li, H.T. Zhang, X. M. Cao, C. Tian, J.S. Zhang, Scripta Materialia 57 (12), 1081 (2007).
  • [14] Y. Ohba, T. Shimozaki, H. Era, Materials transactions 49 (6), 1235 (2008).
  • [15] C. Zhang, et. al., Ceramics International 41 (7), 9107 (2015).
  • [16] K. Kim, H. Ju, J. Kim, Composites Science and Technology 123, 99 (2016).
  • [17] M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, Journal of Applied Physics 79, 1816 (1996).
  • [18] K.M. Lee, T.Y. Choi, S.K. Lee, D. Poulikakos, Nanotechnology 21 (12), 125301 (2010).
  • [19] K. Takahashi, et. al., High Temperatures-High Pressures 37 (2), 119 (2008).
  • [20] L.A. Valentín, J. Betancourt, L.F. Fonseca, M.T. Pettes, L. Shi, M. Soszyński, A. Huczko, Journal of Applied Physics 114 (18), 184301 (2013).
  • [21] J. Li, et al., Advanced Functional Materials 23 (35), 4317 (2013).
  • [22] L.D. Zhao, B.P. Zhang, J.F. Li, M. Zhou, W.S. Liu, J. Liu, Journal of Alloys and Compounds 455 (1-2), 259 (2008).
  • [23] J.F. Li, J. Liu, Physica Status Solidi (a) 203 (15), 3768 (2006).
  • [24] X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Applied Physics Letters 86 (6), 062111 (2005).
  • [25] H. Ju, M. Kim, J. Kim, Chemical Engineering Journal 275, 102 (2015).
  • [26] L. Zhao, Y. He, H. Zhang, L. Yi, J. Wu, Journal of Alloys and Compounds 768, 659 (2018).
  • [27] J. Dong, W. Liu, H. Li, X. Su, X. Tang, C. Uher, Journal of Materials Chemistry A, 1 (40), 12503 (2013).
  • [28] A. Fissel, B. Schröter, W. Richter, Applied Physics Letters 66 (23), 3182 (1995).
  • [29] P. Gong, et al., Physics Letters A 382 (35) 2484 (2018).
  • [30] J.Y. Fan, X.L.Wu, P.Q. Zhao, P.K. Chu, Physics Letters A 360 (2), 336 (2006).
  • [31] Z.D. Sha, X.M. Wu, L.J. Zhuge, Physics Letters A 355 (3), 228 (2006).
  • [32] N.F. Andrade, et al., Carbon 90, 172 (2015).
  • [33] P.V. Medeiros, et al., ACS Nano 11 (6), 6178 (2017).
  • [34] X. Wang, K.M. Liew, The Journal of Physical Chemistry C 115 (21), 10388 (2011).
  • [35] G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos, J. Samios, Nano Letters 6 (8), 1581 (2006).
  • [36] S.H. Barghi, T.T. Tsotsis, M. Sahimi, International Journal of Hydrogen Energy 39 (36), 21107 (2014).
  • [37] R.S. Singh, A. Solanki, Chemical Physics Letters 660, 155 (2016).
  • [38] P.O. Krasnov, F. Ding, A.K. Singh, B.I. Yakobson, J. Phys. Chem. C 111, 49, 17977 (2007).
  • [39] W. Zhang, F. Zhang, Z. Zhang, S. Lu, Y. Yang, Science China Physics, Mechanics and Astronomy 53 (9), 1582 (2010).
  • [40] A. Wu, Q. Song, L. Yang, Q. Hao, Computational and Theoretical Chemistry 977 (1-3), 92 (2011).
  • [41] M. Mirzaei, M. Mirzaei, Journal of Molecular Structure: THEOCHEM 953 (1-3), 134 (2010).
  • [42] A. Mahdaviani, M.D. Esrafili, A. Esrafili, Superlattices and Microstructures 60, 179 (2013).
  • [43] J. Dai, D. Chen, Q. Li, Physica B: Condensed Matter 447, 56 (2014).
  • [44] W. Zhang, F. Zhang, Z. Zhang, S. Lu, Y. Yang, Science China Physics, Mechanics and Astronomy 53 (9), 1582 (2010).
  • [45] A. Wu, Q. Song, L. Yang, Q. Hao, Computational and Theoretical Chemistry 977 (1-3), 92 (2011).
  • [46] A.A. Peyghan, H. Soleymanabadi, Z. Bagheri, Journal of the Iranian Chemical Society 12 (6), 1071 (2015).
  • [47] M. Khodadad, S.M. Baizaee, M. Yuonesi, H. Kahnouji, Physica E: Low-dimensional Systems and Nanostructures 59, 139 (2014).
  • [48] S. Choudhary, S. Qureshi, Physics Letters A 375 (38), 3382 (2011).
  • [49] I. Cabria, M.J. López, J.A. Alonso, The Journal of Chemical Physics 123 (20), 204721 (2005).
  • [50] P.O. Krasnov, F. Ding, A.K. Singh, B.I. Yakobson, The Journal of Physical Chemistry C 111 (49), 17977 (2007).
  • [51] T. Yildirim, S. Ciraci, Physical Review Letters 94 (17), 175501 (2005).
  • [52] E. Masumian, S. M.Hashemianzadeh, A. Nowroozi, Physics Letters A, 378 (34), 2549 (2014).
  • [53] S. Banerjee, S. Nigam, C.G.S. Pillai, C. Majumder, International Journal of Hydrogen Energy 37 (4), 3733 (2012).
  • [54] X. Wang, K.M. Liew, The Journal of Physical Chemistry C 115 (8), 3491 (2011).
  • [55] E. Sjöstedt, L. Nordström, D.J. Singh, Solid State Communications 114 (1), 15 (2000).
  • [56] N. Troullier, J.L. Martins, Physical Review B 43 (3), 1993 (1991).
  • [57] K. Schwarz, P. Blaha, G.K.H. Madsen, Computer Physics Communications 147 (1-2), 71 (2002).
  • [58] J.P. Perdew, et al., Physical Review Letters 100 (13), 136406 (2008).
  • [59] G.K. Madsen, D.J. Singh, Computer Physics Communications 175 (1), 67 (2006).
  • [60] S. Behzad, R. Chegel, Solid State Communications 174, 38 (2013).
  • [61] M.D. Ganji, N. Seyed-Aghaei, M.M. Taghavi, M. Rezvani, F. Kazempour, Fullerenes, Nanotubes, and Carbon Nanostructures 19 (4), 289 (2011).
  • [62] S.P. Huang, D.S. Wu, J.M. Hu, H. Zhang, Z. Xie, H. Hu, W.D. Cheng, Optics Express 15 (17), 10947 (2007).
  • [63] K.J. Li, J.X. Song, H.X. Liu, Advanced Materials Research 625, 230 (2013).
  • [64] M. Voeroes, A. Gali, Journal of Computational and Theoretical Nanoscience 9 (11), 1906 (2012).
  • [65] S. Jiuxu, Y. Yintang, W. Ping, G. Lixin, Z. Zhiyong, Journal of Semiconductors 34 (2), 022001 (2013).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bae3c7c1-1f7b-4643-833b-342c0aa5e9f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.