Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Flood routing as an important part of food management is a technique for predicting the fow in downstream of a river channel or reservoir. Lumped, semi-distributed and distributed models have been devised in this regard. The convex and Att-Kin models are capable of simulating foods in single branches, while in reality, rivers and channels are multiple infows. The convex and modifed Att-Kin models as the simplest lumped models in terms of the storage equation were developed based on an equivalent infow for routing the multiple infows rivers in the present study. The genetic algorithm, a quite robust algorithm, was used for parameter estimation of the extended models. The ability of the extended models in simulating the outfow hydrograph of multiple infows systems was tested on two multiple infows case studies. The results of extended models were compared with the equivalent Muskingum infow model. Comparison of the extended models with the Muskingum model showed that the extended models with one parameter less than the Muskingum model could be suitable for use in food routing of multiple infows systems. The efect of infow hydrographs at diferent time steps was investigated by the principal component analysis (PCA) and reliability analysis. The results showed that the outfow hydrograph of the case study was precisely simulated and predicted by the gene expression programming (GEP) and multilayer perceptron (MLP) models. The PCA and reliability analysis results were adopted for the lumped, GEP and MLP models. The outfow hydrograph was precisely simulated and predicted by the GEP and MLP models, while the precision of lumped models (extended convex, extended modifed Att-Kin and Muskingum models) was not increased.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1149--1161
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
autor
- Department of Civil Engineering Razi University Kermanshah Iran
autor
- Department of Civil Engineering Razi University Kermanshah Iran
Bibliografia
- 1. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2(4):433–459
- 2. Akbari GH, Barati R (2012) Comprehensive analysis of flooding in unmanaged catchments. Proc Inst Civ Eng Water Manag 165(4):229–238
- 3. Barati R (2011) Parameter estimation of nonlinear Muskingum models using Nelder-mead simplex algorithm. J Hydrol Eng 16(11):946–954
- 4. Barati R (2013) Application of Excel solver for parameter estimation of the nonlinear Muskingum models. KSCE J Civ Eng 17(5):1139–1148
- 5. Barati R, Rahimi S, Akbari G (2012) Analysis of dynamic wave model for flood routing in natural rivers. Water Sci Eng 5(3):243–258
- 6. Barati R, Akbari GH, Rahimi S (2013) Flood routing of an unmanaged river basin using Muskingum–Cunge model; field application and numerical experiments. Casp J Appl Sci Res 2(6):8–20
- 7. Bozorg-Haddad OB, Hamedi F, Orouji H, Pazoki M, Loáiciga HA (2015) A Re-water resources planning and management. Water Resour Syst Plan Manag 29(9):3419–3440
- 8. Choudhury P (2007) Multiple inflows Muskingum routing model. J Hydrol Eng 12(5):473–481
- 9. Choudhury P, Rakesh Kumar S, Narulkar S (2002) Flood routing in river networks using equivalent Muskingum inflow. J Hydrol Eng 7(6):413–419
- 10. Chu H-J, Chang L-C (2009) Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. J Hydrol Eng 14(9):1024–1027
- 11. Cronbach LJ (1951) Coefficient alpha and the internal structure of tests. Psychometrika 16(3):297–334
- 12. Davis L (ed) (1991) Handbook of genetic algorithms, and simulated annealing. Van Nostrand Reinhold, New York
- 13. De Jong KA (1975) An analysis of the behavior of a class of genetic adaptive systems. Ph.D. dissertation, University of Michiga, Ann Arbor
- 14. Easa SM (2015) Evaluation of nonlinear Muskingum model with continuous and discontinuous exponent parameters. KSCE J Civ Eng 19(7):2281–2290
- 15. Easa S, Barati R, Shahheydari H, Jafari Nodoshan E, Barati T (2014) Discussion: new and improved four parameter non-linear Muskingum model. Proc ICE Water Manag 147(10):612–615
- 16. Fasahat V, Honarbakhsh A, Samadi H, Sadatinejad SJ (2013) Hydrological flood routing in rivers. Int Res J Appl Basic Sci 4(11):3301–3305
- 17. Field A (2005) Discovering statistics using SPSS. SAGE Publications, London
- 18. Geem ZW (2006) Parameter estimation for the nonlinear Muskingum model using the BFGS technique. J Irrig Drain Eng 132(5):474–478
- 19. Geem ZW (2011) Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search. J Hydrol Eng 16(8):684–688
- 20. Geem ZW (2014) Issues in optimal parameter estimation for the nonlinear Muskingum flood routing model. Eng Optim 46(3):328–339
- 21. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, p 412
- 22. Grefenstette JJ (1987) Genetic algorithms and their applications. In: Proceedings of the second international conference on genetic algorithms. Lawrence Erlbaum Associates, Hillsdale
- 23. Hamedi F, Bozorg-Haddad O, Orouji H, Fallah-Mehdipour E, Loáiciga H (2016a) Nonlinear Muskingum model for flood routing in irrigation canals using storage moving average. J Irrig Drain Eng 142(5):04016010
- 24. Hamedi F, Bozorg-Haddad O, Pazoki M, Asgari H-R (2016b) parameter estimation of extended nonlinear Muskingum models with the weed optimization algorithm. J Irrig Drain Eng 142(12):04016059
- 25. Henson RK, Roberts JK (2006) Use of exploratory factor analysis in published research: common errors and some comment on improved practice. Educ Psychol Meas 66(3):393–416
- 26. Hosseini SM (2009) Application of spreadsheets in developing flexible multiple-reach and multiple-branch methods of Muskingum flood routing. Comput Appl Eng Educ 17(4):448–454
- 27. Jolliffe IT (1986) Choosing a subset of principal components or variables. In: Principal component analysis. Springer series in statistics. Springer, New York, pp 111–149
- 28. Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200
- 29. Karahan H, Gurarslan G, Geem ZW (2013) Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm. J Hydrol Eng 18(3):352–360
- 30. Karahan H, Gurarslan G, Geem ZW (2014) A new nonlinear Muskingum flood routing model incorporating lateral flow. Eng Optim 47(6):737–749
- 31. Khan MH (1993) Muskingum flood routing model for multiple tributaries. J Water Resour Res 29(4):1057–1062
- 32. Kim JH, Geem ZW, Kim ES (2001) Parameter estimation of the nonlinear Muskingum model using harmony search. J Am Water Resour Assoc 37(5):1131–1138
- 33. Kshirsagar M, Rajagopalan B, Lal U (1995) Optimal parameter estimation for Muskingum routing with ungauged lateral inflow. J Hydrol 169(1–4):25–35
- 34. Kumar DN, Baliarsingh F, Raju KS (2011) Extended Muskingum method for flood routing. J Hydro-Environ Res 5(2):127–135
- 35. Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241
- 36. Li B, Xie C, Zhang G (2014) Parameter estimation of nonlinear Muskingum models based on OEPSO. Appl Mech Mater 599–601:1588–1592
- 37. Luo J, Xie J (2010) Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm. J Hydrol Eng 15(10):844–851
- 38. Luo J, Yang X, Xie J (2016) Evaluation and improvement of routing procedure for nonlinear Muskingum models. Int J Civ Eng 14(1):47–59
- 39. McCarthy G (1938) The unit hydrograph and flood routing. In: Conference of North Atlantic: U. S. Army Corps of Engineers, Rhode and Island
- 40. McCuen RH (1998) Hydrologic analysis and design. Prentice-Hall, Upper Saddle River
- 41. Mohan S (1997) Parameter estimation of nonlinear Muskingum models using genetic algorithm. J Hydrol Eng 123(2):137–142
- 42. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng 50(3):885–900
- 43. Niazkar M, Afzali SH (2014) Assessment of modified honey bee mating optimization for parameter estimation of nonlinear Muskingum models. J Hydrol Eng 20(4):04014055
- 44. Niazkar M, Afzali SH (2016) Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method. Hydrol Res 48(3):1253–1267
- 45. O’Donnell T (1985) A direct three-parameter Muskingum procedure incorporating lateral inflow. Hydrol Sci J 30(4):479–496
- 46. Orouji H, Haddad OB, Fallah-Mehdipour E, Marino MA, Barati R (2014) Discussion: estimation of Muskingum parameter by meta-heuristic algorithms. Proc Inst Civ Eng 167(6):365–367
- 47. Pashazadeh A, Javan M (2017a) Development of nonlinear muskingum models for multiple inflows and lateral inflows. Manuscript submitted for publication
- 48. Pashazadeh A, Javan M (2017b) Gene expression programming for routing the flow in multiple inflows. Manuscript submitted for publication
- 49. Perumal M, Tayfur G, Rao M, Gurarslan G (2017) Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods. J Hydrol 546:437–449
- 50. Pett MA, Lackey NR, Sullivan JJ (2003) Making sense of factor analysis: the use of factor analysis for instrument development in health care research. Sage, Thousand Oaks, CA
- 51. Samani H, Jebelifard S (2003) Design of circular urban storm sewer systems using multilinear Muskingum flow routing method. J Hydraul Eng 129(11):832–838
- 52. Samani HM, Shamsipour GA (2004) Hydrologic flood routing in branched river systems via nonlinear optimization. J Hydraul Res 42(1):55–59
- 53. Servat E, Dezetter A (1991) Selection of calibration objective functions in the context of rainfall-runoff modelling in a Sudanese Savannah Area. Hydrol Sci J 36(4):307–330
- 54. Sivapragasam C, Maheswaran R, Venkatesh V (2008) Genetic programming approach for flood routing in natural channels. Hydrol Process 22(5):623–628
- 55. Tung Y-K (1985) River flood routing by nonlinear Muskingum method. J Hydraul Eng 111(12):1447–1460
- 56. Vatankhah AR (2014) Evaluation of explicit numerical solution methods of the Muskingum model. J Hydrol Eng 19(8):06014001
- 57. Vatankhah AR (2017) Non-linear Muskingum model with inflow-based exponent. Proc Inst Civ Eng Water Manag 170(2):66–80
- 58. Wang Q (1991) The genetic algorithm and its application to calibrating conceptual rainfall-runoff models. Water Resour Res 27(9):2467–2471
- 59. Xu D, Qiu L, Chen S (2012) Estimation of nonlinear Muskingum model parameter using differential evolution. J Hydrol Eng 17(2):348–353
- 60. Yoo C, Lee J, Lee M (2017) Parameter estimation of the Muskingum channel flood-routing model in ungauged channel reaches. J Hydrol Eng 22(7):05017005
- 61. Yoon J, Padmanabhan G (1993) Parameter estimation of linear and nonlinear Muskingum models. J Water Resour Plan Manag 119(5):600–610
- 62. Yuan X, Wu X, Tian H, Yuan Y, Muhammad Adnan R (2016) Parameter identification of nonlinear Muskingum model with backtracking search algorithm. Water Resour Manag 30(8):2767–2783
- 63. Zhang S, Kang L, Zhou L, Guo X (2016) A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm. Hydrol Res 48(1):17–27
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bae2a6d8-c5c2-44c9-acf2-12d26a594130