PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of Commodities Prices : Integer and Fractional Models

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper examines the time series of four important agricultural commodities, namely the soybean, corn, coffee and sugar prices. Time series can exhibit long-range dependence and persistence in their observation. The long memory feature of data is a documented fact and there has been an increasing interest in studying such concepts in the perspective of economics and finance. In this work, we start by analyzing the time series of the four commodities by means of the Fractional Fourier Transform (FrFT) to unveil time-frequency patterns in the data. In a second phase, we apply Auto Regressive Integrated Moving Average (ARIMA) and Auto Regressive Fractionally Integrated Moving Average (ARFIMA) models for obtaining the spot price composition and predict future price. The ARFIMA process is a known class of long memory model, representing a generalization of the ARIMA algorithm. We compare the performances of the ARIMA and the ARFIMA models and we show that the ARFIMA has a superior performance for future price forecasting.
Wydawca
Rocznik
Strony
389--408
Opis fizyczny
Bibliogr. 55 poz., tab., wykr.
Twórcy
autor
  • University of São Paulo, Av. Duque de Caxias Norte 225, 13635-900, Brazil
  • Institute of Engineering, Polytechnic of Porto, Rua Dr. António B. de Almeida 431, 4249-015, Porto, Portugal
  • University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Av. Urbana, IL 61801, USA
  • University of São Paulo, Av. Duque de Caxias Norte 225, 13635-900, Brazil
autor
  • UISPA - LAETA/INEGI, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Bibliografia
  • [1] Jaynes ET. On the rationale of maximum-entropy methods. Proceedings of the IEEE, 1982; 70 (9): 939-952. doi: 10.1109/PROC.1982.12425. URL http://adsabs.harvard.edu/abs/1982IEEEP.70.939J.
  • [2] Costa M. Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Physical Review Letters, 2002; 89 (6): 068102. doi: 10.1103/PhysRevLett.89.068102. URL http://link.aps.org/doi/10.1103/PhysRevLett.89.068102.
  • [3] Machado JAT, Lopes AM. Analysis and visualization of seismic data using mutual information. Entropy, 2013; 15 (9): 3892-3909. doi: 10.3390/e15093892. URL http://www.mdpi.com/1099-4300/15/9/3892.
  • [4] Xu L, Ivanov PC, Hu K, Chen Z, Carbone A, Stanley HE. Quantifying signals with power-law correlations: A comparative study of detrended fluctuation analysis and detrended moving average techniques. Physical Review E, 2005; 71 (5): 051101. doi: 10.1103/PhysRevE.71.051101. URL http://link.aps.org/doi/10.1103/PhysRevE.71.051101.
  • [5] Oświęcimka P, Kwapień J, Drożdż S. Wavelet versus detrended fluctuation analysis of multifractal structures. Physical Review E, 2006; 74 (1): 016103. doi: 10.1103/PhysRevE.74.016103. URL http://link.aps.org/doi/10.1103/PhysRevE.74.016103.
  • [6] Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 1985; 16 (3): 285-317. http://dx.doi.org/10.1016/0167-2789(85)90011-9. URL http://www.sciencedirect.com/science/article/pii/0167278985900119.
  • [7] Sprott JC, Sprott JC. Chaos and time-series analysis, volume 69. Oxford University Press, Oxford, 2003.
  • [8] Percival DB, Walden AT. Wavelet methods for time series analysis, volume 4. Cambridge University Press, Cambridge, 2006.
  • [9] Ozaktas HM, Zalevsky Z, Kutay MA. The fractional Fourier transform. Wiley, Chichester, 2001.
  • [10] Lopes AM, Machado JT. Dynamic analysis of earthquake phenomena by means of pseudo phase plane. Nonlinear Dynamics, 2013; 74 (4): 1191-1202. doi: 10.1007/s11071-013-1034-1. URL http://dx.doi.org/10.1007/s11071-013-1034-1.
  • [11] Lopes AM, Machado JT. Pinto CM, Galhano AM. Fractional dynamics and MDS visualization of earthquake phenomena. Computers & Mathematics with Applications, 2013; 66 (5): 647-658. doi: http://dx.doi.org/10.1016/j.camwa.2013.02.003. URL http://www.sciencedirect.com/science/article/pii/S0898122113000953.
  • [12] Lopes AM, Machado JT. Analysis of temperature time-series: Embedding dynamics into the MDS method. Communications in Nonlinear Science and Numerical Simulation, 2014; 19 (4): 851-871. doi: http://dx.doi.org/10.1016/j.cnsns.2013.08.031. URL http://www.sciencedirect.com/science/article/pii/S100757041300381X.
  • [13] Machado JT, Lopes AM. The persistence of memory. Nonlinear Dynamics, 2015; 79 (1): 63-82. doi: 10.1007/s11071-014-1645-1. URL http://dx.doi.org/10.1007/s11071-014-1645-l.
  • [14] Machado JT, Duarte FB, Duarte GM. Analysis of financial data series using fractional Fourier transform and multidimensional scaling. Nonlinear Dynamics, 2011; 65 (3): 235-245. doi: 10.1007/s11071-010-9885-1. URL http://dx.doi.org/10.1007/s11071-010-9885-1.
  • [15] Machado J, Lopes A, Duarte F, Ortigueira M, Rato R. Rhapsody in fractional. Fractional Calculus and Applied Analysis, 2014; 17 (4): 1188-1214. doi: 10.2478/s13540-014-0206-0.
  • [16] Namias V. The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics, 1980; 25 (3): 241-265. doi: 10.1093/imamat/25.3.241. URL http://imamat.oxfordjournals.org/content/25/3/241.abstract.
  • [17] Almeida LB. The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, 1994; 42 (11): 3084-3091. doi: 10.1109/78.330368.
  • [18] Nishchal NK, Joseph J, Singh K. Securing information using fractional Fourier transform in digital holography. Optics Communications, 2004; 235 (4): 253-259. doi: http://dx.doi.org/10.1016/j.optcom.2004.02.052. URL http://www.sciencedirect.com/science/article/pii/S0030401804001907.
  • [19] Chen Y, Sun R, Zhou A. An improved Hurst parameter estimator based on fractional Fourier transform. In: ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers. ISBN 0-7918-4806-X, 2007 pp. 1223-1233. doi: 10.1115/DETC2007-34242.
  • [20] Gell-Mann M, Tsallis C. Nonextensive entropy-Interdisciplinary applications. Oxford University Press. Oxford, 2004.
  • [21] Brooks DR, Wiley EO, Brooks D. Evolution as entropy. University of Chicago Press, Chicago, 1988.
  • [22] Ausloos M, Ivanova K. Dynamical model and nonextensive statistical mechanics of a market index on large time windows. Phys. Rev. E, 2003; 68: 046122. doi: 10.1103/PhysRevE.68.046122. URL http://link.aps.org/doi/10.1103/PhysRevE.68.046122.
  • [23] Duro JA, Esteban J. Factor decomposition of cross-country income inequality, 1960-1990. Economics Letters, 1998; 60 (3): 269-275. doi: http://dx.doi.org/10.1016/S0165-1765(98)00113-X. URL http://www.sciencedirect.com/science/article/pii/S016517659800113X.
  • [24] Mathai A, Haubold H. On generalized entropy measures and pathways. Physica A: Statistical Mechanics and its Applications, 2007; 385 (2): 493-500. doi: http://dx.doi.org/10.1016/j.physa.2007.06.047. URL http://www.sciencedirect.com/science/article/pii/S0378437107007157.
  • [25] Bouchard JP, Potters M. Theory of financial risk and derivative pricing. Cambridge University Press. Cambridge, 2003.
  • [26] Tsallis C, Souza AMC. Constructing a statistical mechanics for Beck-Cohen superstatistics. Phys Rev. E, 2003; 67: 026106. doi: 10.1103/PhysRevE.67.026106. URL http://link.aps.org/doi/10.1103/PhysRevE.67.026106.
  • [27] Beck C, Cohen EGD, Swinney HL. From time series to superstatistics. Phys. Rev. E, 2005; 72: 056133. doi: 10.1103/PhysRevE.72.056133. URL http://link.aps.org/doi/10.1103/PhysRevE.72.056133.
  • [28] Miśkiewicz J. Globalization - Entropy unification through the Theil index. Physica A: Statistical Mechanics and its Applications, 2008; 387 (26): 6595-6604. doi: http://dx.doi.org/10.1016/j.physa.2008.08.007. URL http://www.sciencedirect.com/science/article/pii/S0378437108007073.
  • [29] Box G, Jenkins GM, Reinsel G. Time Series Analysis: Forecasting & Control. Prentice Hall, Upper Saddle River, 1994.
  • [30] Granger CW, Joyeux R. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1980; 1 (1): 15-29. doi: 10.1111/j.1467-9892.1980.tb00297.x. URL http://dx.doi.org/10.1111/j.1467-9892.1980.tb00297.x.
  • [31] Hosking JR. Fractional differencing. Biometrika, 1981; 68 (1): 165-176. doi: 10.1093/biomet/68.1.165. URL http://biomet.oxfordjournals.org/content/68/1/165.abstract.
  • [32] Barkoulas JT, Labys WC, Onochie JI. Long memory in futures prices. Financial Review, 1999; 34 (1): 91-100. doi: 10.1111/j.1540-6288.1999.tb00446.x. URL http://dx.doi.org/10.1111/j.1540-6288.1999.tb00446.x.
  • [33] Jiang J, Cao D, Chen H. Boundary value problems for fractional differential equation with causal operators. Applied Mathematics and Nonlinear Sciences, 2016; 1 (1): 11-22.
  • [34] Brzezinski DW. Accuracy problems of numerical calculation of fractional order derivatives and integrals applying the Riemann-Liouville/Caputo formulas. Applied Mathematics and Nonlinear Sciences, 2016; 1 (1): 23-43. doi: 10.21042.
  • [35] Baillie RT. Long memory processes and fractional integration in econometrics. Journal of Econometrics, 1996; 73 (1): 5-59. doi: http://dx.doi.org/10.1016/0304-4076(95)01732-l. URL http://www.sciencedirect.com/science/article/pii/0304407695017321.
  • [36] Xiu J, Jin Y. Empirical study of ARFIMA model based on fractional differencing. Physica A: Statistical Mechanics and its Applications, 2007; 377 (1): 138-154. doi: http://dx.doi.org/10.1016/j.physa.2006.11.030. URL http://www.sciencedirect.com/science/article/pii/S0378437106012118.
  • [37] Makridakis S, Hyndman RJ, Wheelwright SC. Forecasting: Methods and Applications. John Wiley & Sons, New York, 1998.
  • [38] Bultheel A, Sulbaran HEM. Computation of the fractional Fourier transform. Applied and Computational Harmonic Analysis, 2004; 16 (3): 182-202. doi: http://dx.doi.org/10.1016/j.acha.2004.02.001. URL http://www.sciencedirect.com/science/article/pii/S1063520304000132.
  • [39] Granger CWJ, Newbold P. Forecasting economic time series. Academic Press, San Diego, 1986.
  • [40] Ehlers RS. Análise de séries temporais. Universidade Federal do Paraná, 2009.
  • [41] Tseng FM, Yu HC, Tzeng GH. Applied hybrid grey model to forecast seasonal time series. Technological Forecasting and Social Change, 2001; 67 (2): 291-302. doi: http://dx.doi.org/10.1016/S0040-1625(99)00098-0. URL http://www.sciencedirect.com/science/article/pii/S0040162599000980.
  • [42] Zhang GP. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 2003; 50: 159-175. doi: http://dx.doi.org/10.1016/S0925-2312(01)00702-0. URL http://www.sciencedirect.com/science/article/pii/S0925231201007020.
  • [43] Pai PF, Lin CS. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega, 2005; 33 (6): 497-505. doi: http://dx.doi.org/10.1016/j.omega.2004.07.024. URL http://www.sciencedirect.com/science/article/pii/S0305048304001082.
  • [44] Jin HJ, Frechette DL. Fractional integration in agricultural futures price volatilities. American Journal of Agricultural Economics, 2004; 86 (2): 432-443. doi: 10.1111/j.0092-5853.2004.00589.x. URL http://ajae.oxfordjournals.org/content/86/2/432.abstract.
  • [45] Geweke J, Porter-Hudak S. The estimation and application of long memory time series models. Journal of Time Series Analysis, 1983; 4 (4): 221-238. doi: 10.1111/j.1467-9892.1983.tb00371.x. URL http://dx.doi.org/10.1111/j.1467-9892.1983.tb00371.x.
  • [46] Diebold FX, Rudebusch GD. Scoring the leading indicators. Journal of Business, 1989 pp. 369-391. URL http://www.jstor.org/stable/2353352.
  • [47] Contreras-Reyes JE, Palma W. Statistical analysis of autoregressive fractionally integrated moving average models in R. Computational Statistics, 2013; 28 (5): 2309-2331. doi: 10.1007/s00180-013-0408-7. URL http://dx.doi.org/10.1007/s00180-013-0408-7.
  • [48] Dickey DA, Fuller WA. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 1979; 74 (366a): 427-431. doi: 10.1080/01621459.1979.10482531. URL http://dx.doi.org/10.1080/01621459.1979.10482531.
  • [49] Emiliano PC, Veiga EP. Vivanco MJ, Menezes FS. Critérios de Informação de Akaike Versus Bayesiano: Análise Comparativa. 2010. 19° Simpósio Nacional de Probabilidade e Estatística, São Pedro, Brazil.
  • [50] Ozaktas HM, Arikan O, Kutay MA, Bozdagi G. Digital computation of the fractional Fourier transform. IEEE Transactions on Signal Processing, 1996; 44 (9): 2141-2150. doi: 10.1109/78.536672.
  • [51] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2015. URL https://www.R-project.org.
  • [52] Narayanan VA, Prabhu K. The fractional Fourier transform: theory, implementation and error analysis. Microprocessors and Microsystems, 2003; 27 (10): 511-521. doi: http://dx.doi.org/10.1016/S0141-9331(03)00113-3. URL http://www.sciencedirect.com/science/article/pii/S0141933103001133.
  • [53] Condon E. Immersion of the Fourier transform in a continuous group of functional transformations. Proceedings of the National Academy of Sciences, 1937; 23 (3): 158-164.
  • [54] Tao R, Deng B, Zhang WQ, Wang Y. Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. IEEE Transactions on Signal Processing, 2008; 56 (1): 158-171 doi: 10.1109/TSP.2007.901666.
  • [55] Saxena R, Singh K. Fractional Fourier transform: A novel tool for signal processing. Journal of the Indian Institute of Science, 2013; 85 (1): 11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-badc1de1-53c9-481a-9fe5-e1fd90f3acde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.