PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite-difference time-domain solution of second-order photoacoustic wave equation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A finite-difference time-domain numerical solution is presented for solving a single second-order photoacoustic equation, instead of solving three coupled first-order equations. In this way, we are able to insert the heating function to the simulation directly instead of initial pressure. Results are validated using k-Wave simulation and show a good agreement for future development. The perfectly matched layer boundary condition has been implemented for a second-order photoacoustic equation and results are compared to Dirichlet, Neumann and Mur boundary conditions.
Czasopismo
Rocznik
Strony
435--446
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
  • University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
autor
  • University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Bibliografia
  • [1]LIHONG V. WANG, Multiscale photoacoustic microscopy and computed tomography, Nature Photonics 3(9), 2009, pp. 503–509.
  • [2]LIANGZHONG XIANG, BO WANG, LIJUN JI, HUABEI JIANG, 4-D photoacoustic tomography, Scientific Reports 3, 2013, article 1113.
  • [3]ZHEN YUAN, HONGZHI ZHAO, CHANGFENG WU, QIZHI ZHANG, HUABEI JIANG, Finite-element-based photoacoustic tomography: phantom and chicken bone experiments, Applied Optics 45(13), 2006, pp. 3177–3183.
  • [4]BAUMANN B., WOLFF M., KOST B., GRONINGA H., Finite element calculation of photoacoustic signals, Applied Optics 46(7), 2007, pp. 1120–1125.
  • [5]LEI YAO, HUABEI JIANG, Finite-element-based photoacoustic tomography in time domain, Journal of Optics A: Pure and Applied Optics 11(8), 2009, article 085301.
  • [6]HOFFMANN K.A., CHIANG S.T., Computational Fluid Dynamics, 4th Ed., Vol. 2, Engineering Education System, 2000.
  • [7]TREEBY B.E., COX B.T., k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave field, Journal of Biomedical Optics 15(2), 2010, article 021314.
  • [8]DENG-HUEI HUANG, CHAO-KANG LIAO, CHEN-WEI WEI, PAI-CHI LI , Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method, The Journal of the Acoustical Society of America 117(5), 2005, pp. 2795–2801.
  • [9]YAE-LIN SHEU, PAI-CHI LI, Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger’s perfectly matched layers, The Journal of the Acoustical Society of America 124(6), 2008, pp. 3471–3480.
  • [10]WANG L.V., WU H.-I., Photoacoustic tomography, [In] Biomedical Optics, Wiley, 2009, pp. 283–321.
  • [11]COURANT R., FRIEDRICHS K., LEWY H., Über die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen 100(1), 1928, pp. 32–74.
  • [12]SANMIGUEL-ROJAS E., ORTEGA-CASANOVA J., DEL PINO C., FERNANDEZ-FERIA R., A Cartesian grid finite-difference method for 2D incompressible viscous flows in irregular geometries, Journal of Computational Physics 204(1), 2005, pp. 302–318.
  • [13]KOMATITSCH D., TROMP J., A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation, Geophysical Journal International 154(1), 2003, pp. 146–153.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-badb9dd9-c65e-48b5-90d3-9b36b5efda85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.